

1 Parkinson disease in Elder: lessons from odor detection thresholds on olfacto-trigeminal 2 interaction

3

4 Clovis Foguem^{*1,2}, Mohamed Lemdani³, Caroline Huart^{4,5}

5

⁶ - ¹Auban Moët Hospital, 137 rue de l'hôpital, 51200 Epernay, France;

⁷ - ²University of Burgundy, 21000 Dijon, France.

- ³Faculty of Pharmaceutical and Biological Sciences, EA 2694, University of Lille II, 3, rue du Professeur Laguesse, 59006 Lille, France;

10 -⁴Department of Otorhinolaryngology, Cliniques universitaires Saint-Luc, Brussels, Belgium

¹¹ - ⁵Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium

12

* Corresponding author: Postal address: Auban Moët Hospital, 137 rue de l'hôpital, BP: 137, 51200 Epernay, France

15 E-mail: cfoguem@yahoo.fr

16 Tel: 00(33)621120819 ; Fax: 00(33)326587171

17

18 Running title: PD: olfacto-trigeminal overlap

19

20 **Keywords:** Pathology (Elderly with Parkinson disease), odor detection thresholds, olfacto-
21 trigeminal interaction, abnormalities, diagnosis.

22

23

24

25 **Summary:**

26 Objectives: Human nasal chemosensation is mediated by two separate, though interacting
27 sensory pathways: the trigeminal and olfactory systems. Trigeminal sensitivity and olfacto-
28 trigeminal interactions have not yet been well studied in idiopathic Parkinson's disease (IPD).
29 The aim of this study was to assess odor detection thresholds in elderly IPD patients, and
30 compare them to the odor detection thresholds of healthy controls. Finally, we investigated
31 potential interactions between trigeminal and olfactory sensitivity.

32 Methods: 89 IPD patients aged over 65 and 89 matched healthy participants were enrolled in
33 the study. Odor detection thresholds to 3 stimuli differentially activating olfactory and
34 trigeminal afferents (Phenyl-ethyl alcohol, n-Butanol and Pyridine) were assessed, using an
35 ascending staircase, binary forced-choice procedure.

36 Results and conclusion: Detection threshold scores were able to discriminate between elderly
37 IPD and controls. Pyridine was less effective than the two other odorants, suggesting that
38 trigeminal pathway is less impaired than the olfactory system. We found that the detection
39 thresholds were significantly different between IPD patients with good autonomy, and
40 patients with impaired autonomy.

41

42 **Keywords:** Pathology (Elderly with Parkinson disease), odor detection thresholds, olfacto-
43 trigeminal interaction, abnormalities, diagnosis.

44

45

46 **Introduction**

47

48 The impairment of olfaction is now increasingly recognized as a neurodegenerative
49 diseases feature^[1] and a prominent early-appearing feature of idiopathic Parkinson's disease
50 (IPD)^[2]; and the American Academy of Neurology even recommends an olfactory evaluation
51 of patients, as part of the basic clinical evaluation^[3]. Although lots of studies have investigat-
52 ed olfaction in IPD patients, the vast majority of them have mainly focused on relatively
53 young patients (<65 years), while elderly IPD (>65 years) have hardly been investigated.

54 It is well known that the vast majority of odorants activate both olfactory system (me-
55 diated by the first cranial nerve (CN I)) and trigeminal system (mediated by CN V). These
56 two systems closely interact with each other, resulting in the global nasal chemosensory expe-
57 rience^[4, 5]. While the decrease in olfactory sensitivity is well recognized in IPD regardless of
58 age; in contrast, trigeminal sensitivity appears to be preserved in elderly with IPD patients^[6].
59 Hence, it can be hypothesized that trigeminal sensitivity is less affected in IPD as compared to
60 pure olfactory sensitivity.

61 The purposes of the present study were thus; (1) to assess nasal chemosensory
62 perception deficits in elderly patients with IPD relative to matched healthy control
63 participants, on the basis of odorants detection thresholds; (2) to investigate a possible
64 interaction between olfactory and trigeminal systems, using odorants that are known to
65 differentially activate the olfactory and trigeminal systems; and (3) to explore potential links
66 between chemosensory detection thresholds.

67

68

69 **Materials and Methods**

70 The study is analytical, cross-sectional and aims to evaluate the olfactory detection thresholds
71 in Parkinson's disease patients and matched healthy controls. It was conducted according to
72 the Declaration of Helsinki on Biomedical Research Involving Human Subjects.

73 During enrollment and data collections from October 2011 to May 2014, participants and
74 their relatives were given detailed information about all testing procedures and their consents
75 were collected prior to participating in the study.

76
77 **Participants**

78 In total, 178 subjects were enrolled in the present study: 89 elderly patients with Parkinson
79 disease (IPD) aged 65 and over [74.80 ± 6.76 years; range: 65 - 90 years] and healthy controls
80 matched for gender [79.80 ± 8.82 years; range: 65 - 93 years].

81 All participants had no history of nasal/sinus and oral/throat diseases, neither head injury nor
82 stroke within six months prior to the olfactory tests. Furthermore, they had no acute upper
83 respiratory disease at the moment of testing. Participants in both groups did not have any
84 history of active smoking or less than 20 packs/year of tobacco consumption during the past
85 10 years. Additionally, during the testing period, participants were free of untreated patent
86 depression [evaluated by Mini-Geriatric Depression Scale ^[7]].

87 Neurocognitive [Folstein's Mini-Mental State Examination (MMSE) ^[8] and clock drawing ^[9]]
88 tests were performed to exclude mild cognitive impairment or moderate and severe dementia
89 ^[10].

90 **Patient Group**

91 The IPD patients group included 47 women and 42 men, who were diagnosed according to
92 the United Kingdom Parkinson Disease Society Brain Bank (UKPDSBB) diagnostic criteria
93 ^[11]. Elderly IPD patients are defined as older than 70 years ^[12, 13]. We defined three groups of

94 patients: 2 groups of patients, older than 70: (1) early onset elderly IPD consisting primarily
95 of patients whose first clinical signs appeared before the age of 70 [12, 14], referred to “IPD₁’s
96 group” throughout the manuscript (45 out to 89 IPD); (2) late onset IPD patients (occurring
97 after 70), referred to “IPD₂’s group” throughout the manuscript (23 out to 89 IPD). Moreover,
98 we defined as a third group (3) IPD patients aged between 65 and 70 years, referred to
99 “IPD₀’s group” (21 out to 89 IPD). “Unified Parkinson’s Disease Rating Scale” (UPDRS)
100 (part III) [15] and ‘Hoehn and Yahr’ (HY) scale [16] [somewhat modified into 5 stages: HY₁,
101 HY₂, HY₃, HY₄, HY₅] evaluations were used to assess (i) severity progression of motor
102 (symptom) impairment and relative level of disability; and (ii) global clinical autonomy of the
103 IPD’s patients respectively.

104 At the time of olfactory testing, most of the patients were being treated with L-Dopa (85 of 89
105 IPD) or some other antiparkinsonian drugs either alone or in a combination of two or more
106 treatments [Dopamine receptor agonists or anticholinergic antiparkinson agents or selective
107 monoamine oxidase B (MAO_B) inhibitors (45 out of 89 IPD), catechol-O-methyl transferase
108 (COMT) inhibitors (39 out to 89 IPD) and cranial electrostimulation (7 out to 89 IPD)].

109 1.2. Control Group

110 None of the control subjects had a medical history of Parkinsonism, or any other major
111 neurological disorder. Otherwise, participants in this group were in a good state of autonomy.

112

113 2. Olfactory Testing

114 2.1. Stimuli

115 Olfactory detection thresholds were determined for three odorants known to differentially
116 activate the olfactory and trigeminal systems based on the previous data [17]. Phenyl-ethyl
117 alcohol (PEA) was chosen to activate almost exclusively the olfactory system; n-Butanol was

118 considered to activate both olfactory and trigeminal systems ^[6]. Finally, Pyridine was used to
119 be specifically activating trigeminal afferents ^[5].

120

121 2.2. Procedure

122 Successive dilutions of odorants by a factor 2 were realized with distilled water as solvent.
123 This yielded a geometric series starting from solutions of pure n-Butanol until the 20th
124 dilution, pure PEA until the 23rd dilution or pure Pyridine up to the 26th dilution.

125 The odorant stimulus was presented in a white glass bottle (7.5 cm high, opening diameter: 1
126 cm) filled with 4 ml of liquid. The bottle was presented for 3 seconds, medially 1 cm under
127 both nostrils using a holder to avoid any olfactory or thermic interference with the
128 experimenter's hand. Odor thresholds were assessed using an ascending staircase, binary
129 (stimulus vs. blank) forced-choice procedure, with inter-trial intervals of 90 seconds. The two
130 bottles were presented to the subject in random order. After sniffing each stimulus, the
131 participant was asked to identify the one who smelled stronger. An incorrect choice led to
132 increase the concentration of the stimulus in the next trial. The dilution step at which the
133 odorant stimulus was first detected correctly three times in a row was recorded as the
134 detection threshold (Table 1).

135

136 3. Data Analysis

137 Statistical analyses were performed using Statview (SAS Institute Inc., Version 9.2).
138 The Shapiro-Wilks test was used to test each variable for normality. As some variables were
139 not normally distributed, therefore, nonparametric test procedures (with post-hoc tests when
140 necessary) were used to compare odor detection thresholds. We investigated for a possible
141 order effect of odor (PEA and pyridine) presentation's sequence. Multivariate analyses have

142 been conducted, to account for other parameters in our data (age, sex and order of
143 presentation of PEA's stimuli).

144 In IPD patients, Spearman correlation analyses between odor thresholds were performed.

145 In all cases, the alpha level was set at $p < 0.05$.

146 Sensitivity and specificity of each odorant to discriminate between IPD patients and healthy
147 controls were assessed using Receiver Operating Characteristic (ROC) curves ^[18]. The area
148 under the ROC curve (AUC) was calculated using SPSS software ^[19].

149 Youden's index (Youden Index= Sensitivity + Specificity - 1) was used to define the optimal
150 cut-off points.

151

152 **Results**

153

154 Statistical analyses

155

156 According to the Mann-Whitney-Wilcoxon test, mean olfactory detection thresholds (PEA, n-
157 Butanol, Pyridine) were found to be lower in (i) IPD patients as compared to (ii) healthy
158 matched controls (all p value < 0.001) [Table 2].

159 The multivariate analysis confirmed a significant difference in the mean detection threshold
160 for PEA between IPD patients (*PEA thresholds scores* = 13.73 ± 7.69 [0; 23]) and controls
161 (*PEA thresholds scores* = 21.84 ± 2.07 [9; 23]) ($F = 88.711$; $p < 0.000$), having considered the
162 PEA and trigeminal-like stimuli (n-Butanol or Pyridine) order presentation effect as
163 statistically significant. Indeed, we found a significant reduction of the detection thresholds
164 scores for PEA if the *above* trigeminal-like stimuli were presented before PEA (*PEA*
165 *thresholds scores* = 16.99 ± 7.30) compared to if PEA is presented before trigeminal-like
166 stimuli (*PEA thresholds scores* = 18.86 ± 6.40) ($F = 4.919$; $p = 0.028$).

167 The multivariate analysis indicated that the 'age' variable had no impact on the value of odor
168 detection thresholds when compared between IPD patients and controls ($p = 0.791$; 0.822 and
169 0.207 for PEA, n-Butanol, and Pyridine, respectively).

170 Moreover, the IPD group (IPD_0 , IPD_1 , IPD_2) had no significant effect on the mean odor
171 detection thresholds ($p = 0.664$, 0.271 and 0.486 for PEA, n-Butanol and Pyridine,
172 respectively).

173 Interestingly, we found that odor detection threshold performances were significantly affected
174 by the autonomy status of patients (evaluated on Hoehn and Yahr's scale). Indeed, patients
175 with benign IPD (honeymoon phase corresponding to HY_1 and HY_2) had significantly better
176 olfactory detection threshold performances as compared to patients with malignant IPD

177 (corresponding to HY₃, HY₄ and HY₅); [$p < 0.005$ for odor (PEA, n-Butanol and Pyridine)
178 thresholds)] [Figure 1]. On contrast, no significant difference was observed when the 5
179 different Hoehn and Yahr's stages were considered separately; although the p-values were
180 close to significance between stages 2 and 3 ($p = 0.065$, 0.085 and 0.088 for PEA, n-butanol
181 and pyridine, respectively).

182 Finally, we found a significant difference for the n-butanol detection threshold between
183 patients treated with COMT inhibitors drugs (e.g., Entacapone) associated or not with other
184 drugs and patients without COMT inhibitors drugs (Table 3). This was not true considering
185 thresholds to PEA and Pyridine. L-dopa, dopamine agonists and deep brain stimulation had no
186 effect on odor detection thresholds.

187

188 Correlation analysis results

189 We found a significant correlation between the different odor detection thresholds
190 performances [PEA– n-Butanol ($p < 0.001$, $r = 0.78$); PEA-Pyridine ($p < 0.001$, $r = 0.78$); and n-
191 Butanol-Pyridine ($p < 0.001$, $r = 0.81$)] according to Spearman correlation.

192

193 Receiver operating characteristic (ROC) curves and Odors threshold's cut-off points

194 The ability of each odor to discriminate between IPD and controls was assessed using ROC
195 curves. We found that detection threshold scores to n-Butanol and PEA had good
196 discrimination performances, with sensibility and specificity of respectively 66% and 89% for
197 n-Butanol (area under the curve (AUC) = 0.800), and 72% and 92% for PEA (AUC = 0.881).

198 The pyridine's detection thresholds discrimination performance was lower (Sensitivity: 44%,
199 Specificity: 96%, AUC = 0.693) (Figure 2). The threshold scores associated with the highest
200 Youden index were 20 for PEA, 19 for n-Butanol and 22 for Pyridine (Figure 2).

201

202

203 **Discussion**

204

205 This study shows that similarly as for younger IPD patients (less than 65 years), elderly IPD
206 patients show impaired olfactory detection when compared to healthy subjects. We observed
207 significantly lower mean odor detection performances to the 3 odorants in IPD patients as
208 compared to healthy elderly controls. Because the odorants used in the present study activate
209 the olfactory and/or trigeminal systems, the results suggest that the overall nasal
210 chemosensory sensitivity is more affected in elderly patients with IPD as compared to healthy
211 controls.

212 It is well known that olfaction decreases with age ^[20]. Similarly, it has been shown that
213 trigeminal sensitivity also decreases with age ^[21]. However, these two senses seem to be even
214 more affected in IPD patients. Hence, it has been proposed that an olfactory test should be
215 systematically used in the clinical workup of IPD patients ^[1, 22]. In the present study we found
216 that olfactory thresholds testing using PEA, n-Butanol and Pyridine may be useful in the
217 diagnosis of IPD in the elderly, with IPD patients exhibiting higher odor thresholds as
218 compared to healthy controls. We found that the optimal cutoff value allowing the detection
219 of IPD was 20 (out of 23) for PEA; 19 (out of 20) for n-Butanol and 22 (out of 26) for
220 Pyridine.

221 The ROC curves revealed that pyridine's detection threshold (AUC= 0.693) was less
222 discriminant as compared to n-Butanol (AUC= 0.800) and to PEA (AUC= 0.881). Having an
223 AUC of less than 0.7, the discrimination performance of pyridine detection threshold
224 appeared to be poor and not sensitive enough to allow for an adequate discrimination between
225 IPD elderly patients and healthy controls. A possible explanation for this finding is that
226 trigeminal sensitivity could be less impaired in elderly with IPD than olfactory sensitivity as
227 compared to healthy controls. This is in line with a previous study ^[6].

228 We found highly significant correlations between pairwise odor thresholds. These significant
229 correlations between the PEA, n-butanol and pyridine detection thresholds could be supported
230 by the existence of a close interaction between the trigeminal and olfactory systems.
231 However, the underlying mechanisms are not yet fully understood ^[4].

232

233 We noticed that a suppression-like interaction mechanism seems to be present between
234 trigeminal and olfactory systems because we found a significant decrease of PEA detection
235 thresholds whenever n-Butanol or Pyridine (with pronounced trigeminal component) were
236 presented to subjects during testing before PEA (having almost no trigeminal effect and
237 mainly olfactory component) (p= 0.028). These results are in agreement with those of
238 Schriever et al. ^[23], who also found a decreased olfactory response due to trigeminal
239 activation. This effect appears to be mediated in the olfactory periphery by neuropeptides
240 such as calcitonin gene-related peptide (CGRP) ^[23]. Importantly, this stimuli order effect was
241 not significantly affecting the results, as revealed by a multivariate analysis.

242 Moreover, in the IPD patients, we found that patients with benign IPD (honeymoon phase),
243 had significantly better detection thresholds to the three odorants, than patients with malignant
244 IPD showing a loss of autonomy (more gait and balance difficulties, more depression, cogni-
245 tive problems, swallowing difficulties and autonomic dysfunction). Stern et al. have also
246 shown subtle olfactory test differences between benign IPD and malignant IPD patients using
247 University of Pennsylvania Smell Identification Test (UPSIT) ^[24], which is an olfactory test
248 based on identification of odor and not on detection thresholds. They found a significantly
249 higher USIPT score in benign IPD patients compared to patients with malignant IPD.
250 However, most of the previous publications found that the olfactory loss appears to be rela-
251 tively stable over time and is unrelated to the magnitude of IPD motor symptoms (degree of
252 tremor, rigidity, bradykinesia, or gait disturbance) ^[25]. But some of these surveys included

253 early-onset IPD patients, with more or less preserved autonomy or with average Hoehn and
254 Yahr score (disease stage) less than 3 [25, 26]. Our findings indicate that even though the olfac-
255 tory dysfunctions are set up at early PD stage [26, 27], the patients may have a sustained slightly
256 decrease of odor (PEA, n-butanol and pyridine) detection thresholds scores with ‘inflection
257 Point’ upon HY₂ allowing to discriminate between benign IPD and malignant IPD patients,
258 even if the conventional Hoehn and Yahr’s scale does not. Our findings are in agreement with
259 those of Meusel et al, who showed, an overall decreasing olfactory function in 19 PD patients
260 at 5-year intervals [26]. This is likely to be pathology’s reflection on olfactory and trigeminal
261 pathways.

262 The severity of the olfactory loss may therefore be used as an indicator of overall disease
263 progression in elderly IPD patients. Nevertheless, it would be interesting to evaluate the
264 progression of olfactory function in parallel of the progression of the disease in future studies.
265 Olfactory dysfunction is a clinically significant problem, with a high burden on quality of life
266 [1], and is likely to grow in prevalence due to demographic shifts and improvement of life
267 expectancy (in general and in IPD patients). For these reasons, we think that olfactory
268 evaluation should be integrated to the clinical follow-up of elderly IPD patients.

269 Finally, no gender-related differences were apparent for odor detection thresholds comparison
270 (p-values > 0.2); although many studies have shown that women often outperformed men in
271 most subtypes olfactory tests or examinations [24]. One possibility may be related to the
272 advanced age of our population cohort (aged over 65 years) and the fact that olfactory sense
273 sensitivity declines with senescence [28] or some neurodegenerative diseases such IPD. Further
274 studies are warranted to answer this question.

275

276 Conclusion

277

278 This study highlights the importance of PEA, n-butanol and pyridine detection
279 thresholds to distinguish between elderly Parkinson's patients and matched healthy controls.
280 Interestingly, we found that odor detection thresholds tests are able to distinguish between the
281 earlier IPD patients with good autonomy (honeymoon phase) and other IPD patients with
282 impaired autonomy (becoming malignant IPD).

283 Our results suggest that both olfactory and trigeminal systems are impaired in elderly
284 IPD patients, although 'pure' trigeminal pathways seem to be less impaired than the olfactory
285 system.

286

287 **Acknowledgements**

288 We would like to thank Dr Gerard Brand with whom this work and the olfactory tests have
289 begun; and Dr Bernard Kamsu Foguem, Dr Donatien Chedom Fotso, Dr Henry Abanda and
290 Dr Ibrahim Mounchetrou Njoya and Mrs Tchuente Foguem Germaine for their contribution
291 and analyses of the data; and Mr Emanuel Vandenbroucke for his careful reading of this
292 manuscript. Finally we are grateful to an anonymous referee whose careful writing and
293 pertinent remarks allowed improving the manuscript's content.

294

295 **Conflict of interest statement**

296 The authors have no conflict of interest with regard to this research.

297

298 **Funding**

299 A Health Research Advancement Award of the 'Groupe Pasteur Mutualité' foundation was
300 awarded to Dr Clovis Foguem.

301 Dr Caroline Huart is a postdoctoral fellow supported by the Fund for Scientific Research
302 (FRS-FNRS) of the French-Speaking Community of Belgium.

303

304

305

306

307 **References:**

308 [1] -Hummel T, Whitcroft KL, Andrews P et al. Position paper on olfactory dysfunction.
309 Rhinology.2017;54 (supplement 26): 1-30.

310 [2] -Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012; 8(6):329-
311 339.

312 [3] -McKinnon JH, Demaerschalk BM, Caviness JN, Wellik KE, Adler CH, Wingerchuk DM.
313 Sniffing out Parkinson disease: can olfactory testing differentiate parkinsonian disorders?
314 Neurologist. 2007 Nov;13(6):382-5.

315 [4] -Frasnelli J, Schuster B, Hummel T. Interactions between olfaction and the trigeminal
316 system: what can be learned from olfactory loss. Cereb Cortex. 2007; 17(10):2268-2275.

317 [5] -Brand G. Olfactory/trigeminal interactions in nasal chemoreception. Neurosci Biobehav
318 Rev. 2006;30(7):908-917.

319 [6] -Foguem C, Brand G. Comparison of olfactory thresholds between elderly with Parkinson
320 disease and controls. Journal of Aging and Gerontology. 2014;2: 5-12.

321 [7] -Thomas P, Hazif-Thomas C. Dépression, présentation clinique et diagnostic chez la
322 personne âgée. Revue Geriatr. 2003; 28: 247-258.

323 [8] -Folstein MF, Folstein SE , McHugh PR. "Mini-mental state". A practical method for
324 grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3): 189-198.

325 [9] -Shulman KI. Clock-drawing: is it the ideal cognitive screening test? Int J Geriatr
326 Psychiatry. 2000 Jun;15(6):548-61.

327 [10] -Derouesne C, Poitrenau J, Hugonot L, Kalafat M, Dubois B, Laurent B. Mini-Mental
328 State Examination:a useful method for the evaluation of the cognitive status of patients by the
329 clinician. Consensual French version. Presse Med. 1999 Jun 12;28(21):1141-8.

330 [11] -Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic
331 Parkinson's disease: a clinicopathological study of 100 cases. *J Neurol Neurosurg Psychiatry*.
332 1992; 55: 181-184.

333 [12] -Foguem C, Novella JL. Maladie de Parkinson du sujet âgé. *Revue 'Tout Prévoir -Espace*
334 *FMC* ; dec 2011- jan 2012 ; 427 :27-31.

335 [13] -Diederich NJ, Moore CG, Leurgans SE, Chmura TA, Goetz CG. Parkinson disease with
336 old-age onset : a comparative study with subjects with middle-age onset. *Arch Neurol*. 2003;
337 60 : 529-33.

338 [14] -Belin J, Houéto JL, Constans T, Hommet C, de Toffol B, Mondon K. Geriatric
339 particularities of Parkinson's disease: Clinical and therapeutic aspects. *Rev Neurol (Paris)*.
340 2015; 171(12):841-852.

341 [15] -Parashos SA, Luo S, Biglan KM, et al. NET-PD Investigators. Measuring disease
342 progression in early Parkinson disease: the National Institutes of Health Exploratory Trials in
343 Parkinson Disease (NET-PD) experience. *JAMA Neurol*. 2014 Jun;71(6):710-6.

344 [16] -Giladi N, Nicholas AP, Asgharnejad M, et al. Efficacy of Rotigotine at Different Stages
345 of Parkinson's Disease Symptom Severity and Disability: A *Post Hoc* Analysis According to
346 Baseline Hoehn and Yahr Stage. *J Parkinsons Dis*. 2016; 6(4): 741–749.

347 [17] -Rombaux P, Mouraux A, Bertrand B, Guerit JM, Hummel T. Assessment of olfactory
348 and trigeminal function using chemosensory event-related potentials. *Neurophysiol Clin*. 2006
349 Mar-Apr;36(2):53-62.

350 [18] -Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. The use of receiver operating
351 characteristic curves in biomedical informatics. *J Biomed Inform*. 2005; 38(5):404-415.

352 [19] -IBM Corp. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.
353 2010.

354 [20] -Hüttenbrink KB, Hummel T, Berg D, Gasser T, Hähner A. Olfactory dysfunction:
355 common in later life and early warning of neurodegenerative disease. Dtsch Arztebl Int.
356 2013;110(1-2): 1-7.

357 [21] -Hummel T, Futschik T, Frasnelli J, Hüttenbrink KB. Effects of olfactory function, age,
358 and gender on trigeminally mediated sensations: a study based on the lateralization of
359 chemosensory stimuli. Toxicol Lett. 2003;140-141: 273-280.

360 [22] -Suchowersky O, Reich S, Perlmutter J, Zesiewicz T, Gronseth G, Weiner WJ. Quality
361 Standards Subcommittee of the American Academy of Neurology. Practice Parameter:
362 diagnosis and prognosis of new onset Parkinson disease (an evidence-based review): report of
363 the Quality Standards Subcommittee of the American Academy of Neurology. Neurology.
364 2006; 66(7): 968-975.

365 [23] -Schriever VA, Daiber P, Frings S, Hummel T. Olfactory-trigeminal interaction in
366 chemosensory perception. Jahrestagung der AG Olfaktologie – Gustologie 2013 – Vorträge.
367 https://www.uniklinikum-dresden.de/.../Vortraege_Basel_2013.pdf

368 [24] -Stern MB, Doty RL, Dotti M, et al. Olfactory function in Parkinson's disease subtypes.
369 Neurology. 1994; 44(2):266-268.

370 [25] -Doty RL, Stern MB, Pfeiffer C, Gollomp SM, Hurtig HI. Bilateral olfactory dysfunction
371 in early stage treated and untreated idiopathic Parkinson's disease. J Neurol Neurosurg
372 Psychiatry. 1992; 55(2):138-142.

373 [26] -Meusel T, Westermann B, Fuhr P, Hummel T, Welge-Lüssen A. The course of olfactory
374 deficits in patients with Parkinson's disease--a study based on psychophysical and
375 electrophysiological measures. Neurosci Lett. 2010 Dec 17;486(3):166-70.

376 [27] -Ansari KA, Johnson A. Olfactory dysfunction in patients with Parkinson's disease. J
377 Chronic Dis. 1975;28:493–7.

378 [28] -Nakayasu C, Kanemura F, Hirano Y, Shimizu Y, Tonosaki K. Sensitivity of the olfactory
379 sense declines with the aging in senescence-accelerated mouse (SAM-P1). *Physiol Behav*.
380 2000; 70(1-2):135-139.

381

382

383

384 **Corresponding Author:** Dr Clovis FOGUEM^{1,2}, MD, Ms.

385 ¹ Auban Moët Hospital, 137 rue de l'hôpital, BP: 137, 51200 Epernay, France; ² University of
386 Burgundy, 21000 Dijon, France.

387

388 Table 1 : Example of ascending forced choice test's notation

<u>Dilution</u>	<u>Test 1</u>	<u>Test 2</u>	<u>Test 3</u>
4	O	X	X
3	X	O	X
→ → → 2	O	O	O
1	O	O	O

389 †

390

391 Table 2:

	Number of subjects	Median (and quartiles)	Mean odor detection	p-value
PEA	89/89	21 (15/23)	13.73±7.69 / 21.84±2.07	<0.0001
n-Butanol	89/89	19 (14/20)	12.63±7.25 / 19.34±1.71	<0.0001
Pyridine	54/76	25 (14/20)	17.22±9.4 / 24.88±1.67	0.0004

392

393 [‡]

394

	Number of subjects	Median odor detection	Odor threshold quartiles values	p-value
	(with/without COMT inhibitor drugs)	threshold	(25%/75%)	
PEA	39/47	16.5	8/20	0.081
n-Butanol	39/47	16	6/20	0.0255
Pyridine	24/27	23	9/26	0.513

399 **Tables and iconographies' Legends**

400

401 **Iconographies' Legends**

402

403 Figure 1: Comparison of odor (PEA, n-Butanol, Pyridine) detection thresholds between
404 benign IPD's patients (during "honeymoon"'s period) and malignant IPD patients.

405 ****Footnotes:** - p (Wilcoxon test); value of significance < 0.05

406 **Acronyms:** PEA: Phenyl-ethyl alcohol ; BUT: n-Butanol ; PYR: Pyridine .

407

408

409 Figure 2: Receiver Operating Characteristic (ROC) curves.

410 ROC curves were computed to estimate the discrimination performance (ability to discrimi-
411 nate between IPD patients and controls) of Phenyl-ethyl alcohol (PEA), n-Butanol (BUT) and
412 Pyridine (PYR). The black dot indicates the optimal cut-off value, as defined by the Youden
413 index.

414 **# Footnotes:** - Optimal cut-off values were (0.08; 0.72), (0.11; 0.66) and (0.04; 0.44) for
415 PEA, n-Butanol and Pyridine respectively. The threshold scores associated with the highest
416 Youden index were 20 for PEA, 19 for n-Butanol and 22 for Pyridine.

417

418 **Acronyms:** *Odorants*: PEA: *Phenyl-ethyl alcohol*; BUT: *n-Butanol*; PYR: *Pyridine*.

419 AUC: area under the ROC curve.

420

421

422

423

424 **Legends for Tables**

425

426 Table 1: Example of ascending forced choice test's notation: the recorded detection threshold
427 was first detected correctly three times in a row.

428 † Footnotes: O: adequate response ; X: wrong answer

429

430

431

432 Table 2: Comparisons of Phenyl-ethyl alcohol (PEA), n-butanol and pyridine detection
433 thresholds between idiopathic Parkinson's disease (IPD)'s patients and healthy controls.

434 **‡ Footnotes:** - SD: standard deviation;

435 - p (Wilcoxon test); value of significance < 0.05

436 Table 3: Comparisons of Phenyl-ethyl alcohol (PEA), n-butanol and pyridine detection
437 thresholds between idiopathic Parkinson's disease (IPD)'s patients treated with COMT
438 inhibitor drugs (*eg: Entacapone*) and those without COMT inhibitor drugs.

439