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Abstract
Background: Non-keratinizing nasopharyngeal carcinoma (NPC) is closely related to Epstein-Barr virus (EBV) infection. Patients 

with NPC often exhibit diverse treatment responses due to tumor heterogeneity. Thus, identifying molecular subgroups based 

on EBV involvement holds promise for refining personalized treatment strategies and improving treatment outcomes in NPC 

patients. Methods: 193 treatment-naïve NPC specimens with comprehensive clinical and pathological data were procured from 

Fujian Cancer Hospital. RNA sequencing was employed to acquire the gene expression profiles, followed by the re-annotation of 

100 EBV-associated genes leveraging the EBV sequence. Molecular subtypes were conducted via consensus clustering, with an ex-

ternal NPC cohort serving as a validation dataset. Scissor method was applied to identify survival-associated cell subpopulations 

from single-cell data, following comprehensive bioinformatic analyses. Results: Three molecular subtypes of NPC—C
oriLyt

, C
neg

, and 

C
EB1

—were identified, each with specific clinical profiles. The CEB1 subtype is distinguished by its heightened metabolic activity 

and immunosuppressive environment. A hub-gene-based risk model for these subtypes strongly predicted disease-free survival, 

with replicated results in the validated cohort. The model’s predictive accuracy was high, with areas under the curve for 1, 3, and 

5-year survival rates at 0.79, 0.86, and 0.88, respectively. M2-type macrophages exhibit a high-risk score profile and play a critical 

role in EBV infection, with prominent activation of the TNF-II and TGF-β signaling pathways. Conclusions: This study introduced 

a new EBV-related transcriptomics-based classification system for NPC that showed great promise in predicting patient survival 

outcomes.
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EBV genome-guided transcriptomic re-annotation reveals molecular subtypes of 
nasopharyngeal carcinoma (NPC), informing prognosis and treatment

3 molecular subtypes of NPC identifiedAim

• Identify molecular 
subgroups based on 
EBV involvement

• Hub-gene-based risk model strongly 
predicted disease free survival

• The CEB1 subtype showed 
heightened metabolic activity

• Results were replicated in the 
validated cohort

• M2-type macrophages exhibit a 
high-risk score profile and play a 
critical role in EBV infection

• Improving treatment 
outcomes in
NPC patients

• Refining personalized 
treatment strategies

The risk model shows high 
predictive accuracy and stability

This study introduced a new 
EBV-related transcriptomics-based 
classification system for NPC
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Introduction
Nasopharyngeal carcinoma (NPC) is common in Southeast Asia, 

particularly southern China, with metastasis and recurrence 

being leading causes of death (1–3). The anatomically-based 

tumor-node-metastasis (TNM) staging system is widely used 

but inadequate due to tumor heterogeneity, leading to uncer-

tain patient outcomes (4–6). Thus, precise molecular subtypes 

are essential for predicting clinical outcomes and informing 

therapeutic management, including risk-adapted treatment 

intensity and selection of targeted or immunotherapeutic ap-

proaches. Epstein-Barr virus (EBV) is strongly associated with 

most non-keratinizing subtypes of NPC and the degree of EBV 

involvement varies across histological and molecular subtypes 
(7). Serum levels of EBV-specific immunoglobulin A (IgA) antibo-

dies—targeting the viral capsid antigen (VCA) and early antigen 

(EA)—are significantly elevated in NPC patients compared to 

healthy individuals (8). Consequently, considering the molecular 

typing of NPC from the perspective of EBV infection is a feasible 

concept based on etiology and clinical manifestations. While the 

WHO subclassification system is commonly used for NPC, more 

clinicians recognize its limitations in predicting chemotherapy 

and radiotherapy efficacy (9,10). Next-generation sequencing tools 

have enabled the creation of large-scale data profiles in nume-

rous malignant neoplasms, enhancing systematic and accurate 

tumor characterization (11,12). Considering the significant impact 

of molecular events on patient prognosis and treatment regi-

mens, as well as the prominent role of EBV from both etiological 

and clinical perspectives, it is crucial to identify and characte-

rize molecular subtypes based on the expression profiles of 

individual tumors with EBV sequence re-annotation. NPC can be 

classified into three molecular subgroups by microRNA (miRNA) 

expression, but their distinct pathway enrichments are yet to be 

fully understood (13). In addition, an epigenomic mapping study 

revealed global methylation changes within subtypes, but with 

limited sample size (14). A recent NPC classification suggested 

three molecular subtypes (immune, proliferative, and metabo-

lic), excluding EBV (15). 

The current understanding of NPC heterogeneity lacks insights 

into the high-risk factor EBV. And there is a need to translate 

transcriptomic findings into improved treatment approaches for 

NPC. Our study endeavors to analyze gene expression patterns 

in NPC patients based on EBV sequences, identify novel molecu-

lar subtypes for NPC classification, and assess their clinicopatho-

logical characteristics.

Materials and methods
Clinical sample collection

Fresh tumor tissues were prospectively collected at the time of 

diagnostic nasopharyngeal biopsy from NPC patients treated at 

Fujian Cancer Hospital between January 2015 and January 2018. 

Immediately after acquisition, specimens were cryopreserved 

in liquid nitrogen for long-term storage. This study represents 

a retrospective transcriptomic analysis of these prospectively 

collected biospecimens. Patients were TNM-staged, and their 

clinical characteristics are summarized in Table 1 and Table S1. 

Ethics approval (No. K2022-084-01) and informed consent were 

obtained from each participant. External validation cohort 

GSE102349 was retrieved from the Gene Expression Omnibus 

(GEO) database.

Quantification of plasma EBV DNA

The experimental procedures of this part are detailed in the sup-

plementary materials.

Transcriptome sequencing

The experimental procedures of this part are detailed in the sup-

plementary materials.

Transcriptome analysis based on EBV reference genome 

sequences

Low-quality reads were filtered out of the sequencing raw data 

using fastp (16). The main filtering criteria included 1) filtering 

reads that did not contain splice sequences or contained N, 2) 

cutting splice sequences, 3) filtering fragments with an average 

base mass of less than 20 in a window of 5bp, and 4) filtering 

reads with a final length of less than 50bp. downloaded from 

NCBI EBV (GCF_002402265.1) reference genome sequence, use 

HISAT (17) to create an index file of the reference genome, and 

compare the high-quality sequencing data to this genome, and 

the final result contains a BAM file that uniquely compares to the 

genome. Gene expression was calculated using HTSeq-count 

tool (18) to obtain the sequencing counts for each gene in each 

sample, and the corresponding general transfer format (GTF) 

files were obtained from https: //ebv.wistar.upenn.edu/down-

loadstatic/ebv.custom.gtf. The expression of each gene was 

obtained by FPKM and TPM normalisation. 

Single-cell (scRNA)-seq data source and processing

The experimental procedures of this part are detailed in the sup-

plementary materials.

Identification of survival-associated single cells using the 

scissor algorithm

The experimental procedures of this part are detailed in the sup-

plementary materials.

Risk score assessment and cellular communication analysis 

in single-cell data 

The experimental procedures of this part are detailed in the sup-

plementary materials.

Detecting differentially expressed genes (DEGs) between 
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Table 1. Clinical features profile of NPC patients.

Characteristics Male Female p-value

n 136 57

Age, mean ± SD 48.824 ± 10.827 47.421 ± 9.8488 0.401 

Pathological type, n (%) 0.528 

Non-keratinizing undifferentiated 133 (68.9%) 57 (29.5%)

Keratinizing moderately differentiated 1 (0.5%) 0 (0%)

Keratinizing poorly differentiated 2 (1%) 0 (0%)

T, n (%) 0.365 

1 24 (12.4%) 16 (8.3%)

2 31 (16.1%) 12 (6.2%)

3 44 (22.8%) 18 (9.3%)

4 37 (19.2%) 11 (5.7%)

N, n (%) 0.403 

0 13 (6.7%) 2 (1%)

1 45 (23.3%) 22 (11.4%)

2 53 (27.5%) 25 (13%)

3 25 (13%) 8 (4.1%)

M, n (%) 1.000 

0 128 (66.3%) 54 (28%)

1 8 (4.1%) 3 (1.6%)

Stage, n (%) 0.243 

I 4 (2.1%) 0 (0%)

II 24 (12.4%) 15 (7.8%)

III 50 (25.9%) 23 (11.9%)

IV 58 (30.1%) 19 (9.8%)

Induction chemotherapy cycle, n (%) 0.673 

0 22 (11.4%) 11 (5.7%)

1 2 (1%) 2 (1%)

2 53 (27.5%) 18 (9.3%)

3 42 (21.8%) 15 (7.8%)

4 8 (4.1%) 5 (2.6%)

5 1 (0.5%) 0 (0%)

6 8 (4.1%) 6 (3.1%)

EB-DNA before treatment, median (IQR) 704.5 (500, 5922.5) 886 (500, 4840) 0.993 

Induction chemotherapy, n (%) 0.599 

Yes 114 (59.1%) 46 (23.8%)

No 22 (11.4%) 11 (5.7%)

Whether RT is complete

Yes 136 (70.5%) 57 (29.5%)

No 0 (0%) 0 (0%)

Targeted RT, n (%) 0.600 

Yes 31 (16.1%) 15 (7.8%)

No 105 (54.4%) 42 (21.8%)

continues on next page
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NPC and normal tissues

The experimental procedures of this part are detailed in the sup-

plementary materials.

Gene set variation analysis

The experimental procedures of this part are detailed in the sup-

plementary materials.

Gene Ontology (GO) enrichment analysis

The experimental procedures of this part are detailed in the sup-

plementary materials.

Consensus clustering

The experimental procedures of this part are detailed in the sup-

plementary materials.

Principal component analysis (PCA) 

The experimental procedures of this part are detailed in the sup-

plementary materials.

Survival analysis

The experimental procedures of this part are detailed in the sup-

plementary materials.

Weighted gene co-expression network analysis (WGCNA)

WGCNA was executed in R (v4.3.2) using default parameters 

to construct gene co-expression networks (19–21). Pearson cor-

relations between modules and phenotypic traits for each 

subtype were computed and adjusted for FDR using Benjamini-

Hochberg. Hub genes, featuring high connectivity within their 

modules, were pinpointed as crucial regulatory elements.

Evaluation of immune cell infiltration level

The experimental procedures of this part are detailed in the sup-

plementary materials.

Constructing and validating the prognostic risk signature

The experimental procedures of this part are detailed in the sup-

plementary materials.

Chemotherapy and radiotherapy sensitivity evaluation

The experimental procedures of this part are detailed in the sup-

plementary materials.

Immunotherapy response prediction

The experimental procedures of this part are detailed in the sup-

plementary materials.

Results
Consensus clustering identified three subtypes

Transcriptomic exploration was conducted on 193 untreated 

primary NPC cases from Fujian Cancer Hospital, with clinico-

pathological characteristics summarized in Table 1. Through 

EBV genomic re-annotation of existing transcriptomic data, we 

identified 13 DEGs associated with EBV sequence elements (Fi-

gure 1A). These EBV-guided DEGs were then used for consensus 

clustering via the k-means algorithm, revealing three molecular 

subtypes of NPC with distinct expression profiles (Figure 1B).

Particularly, cluster C1 exhibited pronounced expression of 

oriLyt, whereas clusters C2 exhibited diminished oriLyt expres-

sion but heightened EB1 expression. In contrast, cluster C3 

demonstrated minimal expression of both oriLyt and EB1 (oriLyt 

and EB1 negative) but exhibited expression of other DEGs. 

Therefore, cluster C1 corresponds to the C
oriLyt

 subtype, C2 to 

the C
EB1

 subtype, and C3 to the C
neg

 subtype, as shown in Figure 

1C. The combined results of PCA analyses revealed a substantial 

trend of separation among samples from the three clusters, 

reflecting notable differences and heterogeneity between these 

subtypes at the transcriptome level and heterogeneity (Figure 

1D). We compared EB DNA copy profiles in peripheral blood of 

clinical patients from these three clusters. The analyses showed 

that C
oriLyt

 had a higher percentage of elevated EB DNA levels 

(Figure 1E). Cluster C
EB1

 particularly exhibited increased activity 

in metabolic pathways, including sphingolipid, arachidonic acid, 

linoleic acid, and glycerolipid metabolism (Figure 1F). Regarding 

C
oriLyt

, it exhibits significant enrichment in immune-related bio-

logical processes, including regulation of CD8 positive αβ T cell 

differentiation, CD40 signaling pathway, activation induced cell 

death of T cells, and regulation of natural killer cell chemotaxis 

(Figure 1G).

RT: radiotherapy; Targeted RT: Whether targeted therapy during radiotherapy; IQR: Interquartile Range; CCRT cycle: Cycle of concurrent chemoradio-

therapy.

Characteristics Male Female p-value

CCRT cycle, n (%) 0.776 

0 29 (15%) 15 (7.8%)

1 18 (9.3%) 9 (4.7%)

2 76 (39.4%) 29 (15%)

3 13 (6.7%) 4 (2.1%)
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Each identified subtype showed distinct clinical feature in 

patients with NPC

We then investigated whether the three identified subtypes 

corresponded to distinct clinical characteristics. Maximum 

standardized uptake value (SUV) of tumor primary lesion 

(SUV-Tmax) and lymph node (SUV-Nmax) were analyzed from 

patients undergoing the positron emission tomography–com-

puted tomography (PET-CT) scans. Although SUV values are 

not definitive indicators of disease severity or prognosis, they 

reflect underlying metabolic activity and may offer supportive 

evidence of tumor aggressiveness. In our cohort, both SUV-Tmax 

and SUV-Nmax showed an increasing trend across the subtypes, 

with the C
EB1

 subtype exhibiting the highest values, suggesting 

a potential link with heightened metabolic reprogramming (Fi-

gures 2A–B). Notably, patients classified within the C
EB1

 subtype 

presented with advanced clinical stages, higher recurrence rates, 

and poor long-term outcomes. In stark contrast, the C
oriLyt

 sub-

type was characterized by early clinical stages, lower recurrence 

rates, and more favorable prognosis (Figures 2C–E). Further-

more, stage III-IV patients also revealed a consistent prognostic 

trend (Figure 2F). This result is demonstrated in the validation 

dataset (Figure 2G). Moreover, patients with the C
EB1

 subtype 

Figure 1. Consensus clustering identifies three molecular subtypes based on EBV sequences in NPC patients. (A) A total of 13 differently expressed 

genes (DEGs) were identified between tumour tissues and normal tissues of NPC patients based on EBV sequence annotation (n = 193); (B) Heatmap 

of the consensus clustering scheme (k = 3) in 193 nasopharyngeal carcinoma samples; (C) expression of DEG in the three subtypes; (D) Principle 

Component Analysis map revealing the different expression in the three subtypes patterns; red dots represent C
oriLyt

 subtype, blue dots represent 

C
neg

 subtype, and green dots represent C
EB1

 subtype; (E) EB DNA copies of NPC patients in the three subtypes; (F) Heatmap of KEGG pathway scores of 

C
oriLyt

, C
neg

, and C
EB1

 subtypes (n = 193); (G) GO enrichment analysis demonstrating the immunological related pathways of C
oriLyt

 subtype.
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Figure 2. Novel NPC classifications constructed on the basis of EBV sequences show different clinical prognostic features. (A) PET/CT (positron emis-

sion tomography/computed tomography) parameter SUV value of the primary lesion of the tumor (SUV-Tmax) in patients with NPC in different 

subtypes; (B) PET- CT parameter SUV value of the tumor invading the lymph nodes (SUV-Nmax) in patients with NPC in different subtypes; (C) Bar 

graphs showing the frequency of different subtypes in these subtypes; (D) Relapse rate among these subtypes. NPC relapse was presented by PET/

CT; (E – G) Kaplan-Meier disease-free survival curves for all (E) and stage III-IV (F) patients with NPC in the internal cohort and NPC-GSE102349 cohort 

(G) belonging to C
oriLyt

, C
neg

, and C
EB1

 subtypes; (H) Difference of hallmarks of cancer in identified three clusters. ns, p > 0.05; *, p < 0.05, ***, p < 0.001, 

****, p < 0.0001.  
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Figure 3. Three subtypes are associated with distinct tumor microenvironments. (A–B) Violin plots showing the median, quartile, and kernel density 

estimations for each immune score (A) and tumor purity score (B); (C) Box plot of 6 immune cell population score among three subtypes. Red boxes 

represent C
oriLyt

 subtype, blue boxes represent C
neg

 subtype, and green boxes represent C
EB1

 subtype; (D) Heatmap of immune cell population scores 

among three subtypes in validation dataset; (E) Heatmap demonstrating the expression of chemokines and interleukin family members among three 

clusters; (F–H) Heatmaps presenting the differential cytotoxicity gene expression (F), immune checkpoint gene expression (G), and MHC gene expres-

sion (H) among the three subtypes. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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scored lower in the cytokine-associated hallmark pathway, in-

dicating an underlying immunosuppressive microenvironment 

(Figure 2H).

Identified subtypes exhibited specific tumor microenviron-

ments

The next step is to extensively focus on the microenvironmental 

components across tumor subtypes. The C
EB1

 subtype exhibited 

a less favorable immune score compared to C
oriLyt

 and C
neg

 sub-

types, with higher tumor purity, validated in both internal and 

external cohorts (Figures 3A–B, S1A). Tumor Immune Estimation 

Resource (TIMER) method evaluation indicated significantly 

lower proportions of immune cells, including B cells, CD4+ and 

CD8+ T cells, and macrophages, in C
EB1

 subtype patients (Figures 

3C, S1B). Using ssGSEA, the validation set showed minimal im-

mune cell infiltration in the C
EB1

 subtype, particularly for B cells 

and CD4+/CD8+ T cells, compared to the C
oriLyt

 subtype with the 

highest immune cell expression (Figure 3D). Further assessment 

on the expression of chemokines and interleukin family mem-

bers indicated that the C
EB1

 subtype exhibited markedly lower 

expression levels compared to the other two subtypes (Figure 

3E). Additionally, downregulation of most cytotoxicity genes, 

immune checkpoints, and major histocompatibility complex 

(MHC) genes was observed in C
EB1

 subtype, contrasting with 

upregulation in C
oriLyt

 and C
neg

 subtypes (Figures 3F–H). These fin-

dings suggest potential limited response to immune checkpoint 

inhibitor therapy in C
EB1

 subtype patients.

Establishing and validating the prognostic signature for 

NPC

We created a risk signature focusing on the pivotal genes of the 

identified subtypes through WGCNA applied to gene expres-

sion data. The genes in the green, red, and turquoise modules 

corresponded to the C
oriLyt

, C
neg

, and C
EB1

 subtypes, respectively 

(Figure 4A). Key genes with prognostic significance were chosen 

from these modules (Figure 4B). From the chosen genes, 14 

genes were validated and selected for the prognostic model via 

LASSO regression (Figure S2A), leading to the development of a 

risk score model. Subsequently, a risk score model was formula-

ted with the equation: Risk score = 0.1515 × BMPER + 0.1719 × 

SPSB4 + 0.3283 × SLAMF9 − 0.5385 × CLEC4E + 0.0014 × DKK1 

+ 0.3454 × IGSF1 + 1.0983 × RIMS2 + 0.0056 × SPP1 + 0.0703 × 

PTX3 + 0.3797 × CD276 + 0.2150 × BCHE + 0.0894 × BMP2 (Table 

S4). Next, we examined the link between survival status and risk 

score. Results showed fewer surviving patients in the high-risk 

group compared to the low-risk group (Figure S2B). Kaplan-

Meier analysis confirmed that the high-risk score was related 

to worse disease-free survival (DFS) in Fujian cancer hospital 

cohort (Figure 4C). Furthermore, we validated the prognostic 

significance of the risk model within the subgroup analyses. A 

higher risk score was linked to poorer DFS in the C
oriLyt

, C
neg

, and 

C
EB1

 subtypes (Figure S2C). This result was validated in the valida-

tion cohort (Figure S3A).

The NPC risk signature demonstrates robust prognostic as-

sessment capabilities

The risk model of NPC exhibited substantial predictive capability 

in prognostic evaluation. To assess our risk model’s performance, 

we evaluated its predictive accuracy for one-, three-, and five-

year survival using receiver operating characteristic (ROC) curve 

analysis, yielding areas under the curve of 0.79, 0.86, and 0.88 

(all > 0.7), respectively (Figure 4D). The external validation set, 

GSE102349, also exhibited strong predictive power, with respec-

tive area under curve (AUC) value for 2-year, 3-year, and 4-year 

survival outcomes of 0.73, 0.70, and 0.77, as illustrated in Figure 

S3B. Compared to classical clinical features like age, gender, TNM 

stage, and clinical stage, this risk signature demonstrated supe-

rior predictive efficiency and stable AUC values between 0.8 and 

0.9 (Figure 4E). The risk score within the validation set escalated 

in correlation with the advancing clinical stages, indicating that 

an increased risk score is a predictive marker of disease advance-

ment (Figure S3C). Univariate Cox regression analyses confir-

med the predicted power of the risk score for DFS, revealing a 

significant association between high-risk scores and poorer DFS 

outcomes (Figure 4F). Multivariate analyses further corrobora-

ted that a high-risk score remained an independent predictor 

of worse DFS, even after accounting for other clinical variables 

(Figure 4G).

Predictive power of the efficacy of conventional treatment 

and immunotherapy

Limited responsiveness to diverse therapeutic strategies fre-

quently characterizes poor prognostic outcomes. Building on 

our prior findings linking this risk score with adverse prognosis, 

we next examined its utility as a predictive biomarker for thera-

peutic response to chemotherapy, radiotherapy and immuno-

therapy. Chemotherapeutic agents utilized in the management 

of NPC, such as docetaxel and paclitaxel, encounter resistance 

issues in high-risk patients, given that their efficacy is inversely 

associated with the risk score (Figure 5A). A high-risk score is 

associated with elevated radioresistance scores (Figure 5B), 

indicating potential insensitivity to radiotherapy. We also ob-

served high scores of radiotherapy resistance in the C
EB1

 subtype 

(Figure 5C). With standard treatment showing insensitivity in 

these cases, attention turned towards assessing immunotherapy 

response in patients with high-risk scores. Based on the tumor 

immune dysfunction and exclusion (TIDE) results, low IFNγ 

expression in the C
EB1

 subtype was indicative of poor immuno-

therapy response (Figure 5D). A smaller proportion of patients 

in the high-risk group exhibited a response to immunotherapy 

compared to those in the low-risk group (Figure 5E). Moreover, 

we discovered a negative correlation between risk score and im-
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Figure 4. Establishment and verification of the NPC prognostic signature with a strong power for prognosis assessment. (A) Heatmap of the correla-

tion between module eigengenes and subtypes of NPC. Each table cell contains the correlation coefficient and p-value. The color shade represents 

the correlation coefficient and p-value is described in parenthesis; (B) Univariate Cox analysis of key genes identified by WGCNA in three subtypes; (C) 

Kaplan–Meier curves for patients with high- or low-risk scores in the in-house training cohort. DFS is selected as a statistical indicator; (D) ROC curve 

showing the predictive value of NPC risk signature for 1-, 3-, and 5-year survival rates; (E) Comparison of predictive value between NPC risk signature 

and clinicopathologic features; (F–G) Univariate Cox (F) and multivariate Cox analyses (G) evaluating the independent prognostic value of the NPC 

risk signature in terms of DFS.

mune checkpoint expression in our internal cohort, which was 

validated in the GSE102349 dataset (Figures 5F–G).

M2 macrophages drive high-risk immune profiles and pre-

dict poor prognosis in viral-associated tumor environments

The NPC immune microenvironment is both complex and dy-

namic, with EBV infection driving active immune cell engage-

ment. To elucidate the underlying pathological mechanisms, we 
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Figure 5. Risk model predicts the response of chemotherapy, radiotherapy and immunotherapy. (A) The relationship between risk score and chemo-

therapy drug sensitivity was evaluated; (B) The correlation between risk score and radiation therapy resistance scores; (C) The difference of radiation 

therapy resistance scores among C
oriLyt

, C
neg

, and C
EB1

 subtypes; (D) The difference of IFNG expression level among C
oriLyt

, C
neg

, and C
EB1

 subtypes; (E) 

Percentage of patients in high and low risk groups who may respond or may not respond to immunotherapy; (F–G) The correlation between risk 

score and immune checkpoint expression in the in-house cohort (F) and GSE102349 cohort (G).
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Figure 6. High-risk profile and prognostic impact of M2 macrophages in viral immune response. (A) UMAP projection of single-cell dataset 

GSE150430, with each color denoting a distinct cell type; (B) Mapping of risk score values at the single-cell level, with high-risk regions circled in 

red; (C) Boxplot illustrating quantitative risk score values across different cell populations; (D) UMAP mapping of risk scores within macrophages; (E) 

Subtype analysis of macrophages with corresponding marker expression levels; (F) Annotation of macrophage subpopulations; (G) Scissor algorithm 

results identifying cell populations positively or negatively correlated with disease-free survival (DFS); gray indicates no correlation, red signifies posi-

tive correlation with poor DFS, and blue indicates negative correlation with poor DFS; (H) Proportion analysis of cell populations identified by Scissor 

with significant DFS associations; (I-J) GO biological process (I) and KEGG pathway (J) enrichment analyses of differentially expressed genes between 

Scissor-positive and Scissor-negative macrophages; (K-M) Intercellular communication signals between macrophages and other cell subpopulations.
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examined the viral immunity landscape at a single-cell reso-

lution. Our analysis of 16 NPC samples identified five distinct 

cell subpopulations (Figures S4A–B, Figure 6A), highlighting 

an intricate interplay between tumor and immune cells. Risk 

score mapping revealed macrophages as the highest-risk cell 

population, positioning them as potential key mediators in pro-

tumorigenic activity (Figures 6B–C). Given the diversity within 

macrophage subtypes, further annotation identified the M2 

subtype as contributing the highest risk score proportion (Fi-

gures 6D–F). To investigate the link between macrophages and 

poor prognosis, we employed the Scissor algorithm, integrating 

bulk and single-cell data, which identified cell populations cor-

relating positively or negatively with patient prognosis (Figure 

6G). Analysis confirmed macrophages as the predominant cell 

type in populations associated with poor outcomes (Figure 6H), 

supporting our initial findings. Enrichment analysis of DEGs in 

scissor+ and scissor- macrophages linked to prognosis revealed 

significant enrichment in viral response pathways (GO biological 

process, Figure 6I) and EBV infection pathways (KEGG, Figure 6J), 

underscoring their distinct role in EBV-driven immunity. Under-

standing macrophage signaling pathways is essential; CellChat 

analysis demonstrated active signaling networks among macro-

phages (Figures 6K–M, Figures S4C–F). The active SPP1 signaling 

pathway as a malignant feature underscores their malignancy-

promoting activities (Figure 6K), while the active PD-L1 pathway 

highlights immune-suppressive signaling (Figure 6L). Additio-

nally, TGF-β signaling—known to regulate immune overactiva-

tion—was primarily emitted by macrophages, further affirming 

their immunosuppressive role (Figure 6M).

Discussion
EBV, a known high-risk factor, is intricately linked to the onset of 

NPC. Precision oncology leverages sophisticated molecular pro-

filing methods to pinpoint excellent biomarkers within tumors. 

Integrating an understanding of disease progression with risk 

factors, along with precision oncology strategies, offers novel 

perspectives in cancer diagnostics and personalized therapies. 

In our research (Figure S5), we conducted a novel molecular 

classification of NPC through transcriptome profiling of re-

annotated EBV sequences, which were categorized into three 

distinct clinical subtypes: C
oriLyt

, C
neg

, C
EB1

. Our findings indicate 

that cluster C
EB1

 is correlated with more advanced clinical stages 

and a poorer long-term prognosis, characterizing an immuno-

suppressive tumor microenvironment. In contrast, C
oriLyt

 and 

C
neg

 subtypes predominantly feature earlier clinical stages and 

a more favorable prognosis. We employed WGCNA to pinpoint 

pivotal genes for each cluster. Additionally, we created and veri-

fied a prognostic model using these key genes, demonstrating 

significant potential for enhanced prognostic evaluation. Our 

findings may inform risk-adapted therapeutic strategies for NPC 

patients. The identification of molecular subtypes, especially the 

immunosuppressive C
EB1 

subtype, suggests potential benefits 

from alternative immunotherapeutic combinations targeting 

the TGF-β or TNF-II pathways. Moreover, our subtype-derived 

risk model demonstrated strong prognostic value, which could 

aid in tailoring therapeutic intensity. High-risk patients may 

require more aggressive adjuvant therapies and closer surveil-

lance schedules, while low-risk patients might be spared from 

overtreatment. Integration of this risk model into clinical work-

flows may enhance personalized care in NPC.

With regard to genomic studies, a variety of genetic alterations 

have been identified in NPC, including amplification of the 

CCND1 gene, mutation of the TP53 gene, and activation of can-

cerous signaling pathways (3,22–25). Recent classification schemes 

for NPC based on miRNA expression, DNA methylation, or host 

transcriptomic profiles have provided important molecular in-

sights but often lacked clear biological interpretation or clinical 

utility. For example, miRNA-based subtypes defined in earlier 

studies lacked consistent immune or metabolic correlates (13). In 

addition, genome sequencing has linked specific EBV subtypes 

to an elevated risk of nasopharyngeal cancer, but the impact on 

patient stratification remains understated. In contrast, we rean-

notated the EBV viral RNA expression profiles of 193 patients 

with NPC, revealing three EBV-associated subtypes (C
oriLyt

, C
neg

, 

and C
EB1

) with distinct immune, metabolic, and prognostic 

features. Notably, our subtypes capture EBV-driven biological 

variation and provide prognostically significant groups, thereby 

bridging viral etiology with clinical relevance—an aspect not 

addressed in prior systems. However, it’s essential to validate 

our findings in an independent internal cohort, which should be 

considered when interpreting the study results. 

Additionally, we discovered a set of key genes within these 

subtypes that strongly correlated with NPC prognosis. BMPER, 

essential for full activation of bone morphogenetic proteins 

signaling, is highly expressed in malignant tumors and critical 

for tumor growth (26). Similarly, CLEC4E is significantly upregula-

ted in gastric cancer, where its high expression is linked to poor 

prognosis and enhances cancer cell migration and invasion (27). 

DKK1 contributes to tumor immune evasion and resistance to 

anti-PD-1 therapy in gastric cancer by recruiting immunosup-

pressive macrophages (28). In non-small cell lung cancer, IGSF1 is 

more expressed in cells with low PD-L1 expression, while BMP2 

overexpression is tightly associated with advanced tumor stages 

and increased metastatic load (29,30). In colorectal cancer, RIMS2 

is hypermethylated and underexpressed, affecting patient 

prognosis (31). Conversely, tumor suppressor genes like SPSB4 are 

associated with the suppression of specific miRNAs in the tumor 

microenvironment of colon cancer and are elevated in TME cells 
(32). SLAMF9, upregulated in melanoma, inhibits cell migration 

and has immunomodulatory effects on macrophages (33). SPP1 

plays a crucial role in determining tumor-associated macro-

phage polarity and serves as a prognostic indicator (34). Defects 
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in PTX3 enhance autophagy in gliomas, which is key to control-

ling ferritin breakdown (35). CD276 helps cancer stem cells evade 

the immune system in head and neck squamous cell carcinoma, 

suggesting that targeting it may reduce their numbers (36). Lastly, 

BCHE is a key prognostic factor in endometrial cancer, with a 

negative association with CD4+ regulatory T cells (37). However, it 

is necessary to conduct additional validation experiments either 

in vitro or in vivo to fully elucidate the functions of these key 

genes.

Immune checkpoint inhibitors (ICIs), a cornerstone of immu-

notherapy, have shown remarkable efficacy in the treatment of 

NPC (38). Despite this, the therapeutic response has been variable, 

with some patients ultimately developing resistance to ICIs. Stra-

tifying patients into high and low susceptibility groups could 

enhance the precision and effectiveness of immunotherapy. 

While various predictive biomarkers such as tumor mutational 

burden (TMB), microsatellite instability (MSI), lymphocyte infil-

tration, and immune scores, have been proposed, they individu-

ally offer limited predictive power (39). Beyond subtype identifi-

cation and prognostic stratification, our findings may also have 

implications for current therapeutic approaches in NPC. The C
EB1

 

subtype, for instance, displayed features of immune suppression 

and metabolic activation, suggesting potential resistance to 

standard immunotherapies such as PD-1/PD-L1 blockade. These 

patients might instead benefit from combination strategies that 

co-target immunosuppressive pathways (e.g., TGF-β, TNF-II) or 

metabolic vulnerabilities. In contrast, C
oriLyt

 and C
neg

 subtypes 

exhibited higher immune infiltration and less pronounced 

metabolic signatures, which may render them more responsive 

to immune checkpoint inhibitors or conventional chemoradio-

therapy. Therefore, our molecular subtypes could help guide 

treatment sensitivity predictions and enable more refined, risk-

adapted therapeutic decision-making in clinical settings.

Limitations 

This study has several limitations. First, although our cohort was 

relatively large and clinically annotated, it was derived from a 

single institution, which may limit the generalizability of the 

findings. Second, the external validation cohort lacked detailed 

clinical outcomes and EBV load data, which restricted further 

validation of subtype-specific prognostic features. Third, func-

tional validation of the identified molecular subtypes and their 

therapeutic implications was not conducted in vitro or in vivo. 

Lastly, potential HPV co-infection, particularly in EBV-negative 

or keratinizing subtypes, was not assessed and warrants further 

investigation. Future studies exploring HPV-associated mole-

cular features could further expand our understanding of NPC 

heterogeneity.

Conclusion
This study introduces an innovative transcriptomic-based clas-

sification system for NPC, utilizing EBV gene expression patterns. 

This classification holds significant promise in prognosticating 

the survival outcomes of patients with NPC.
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across various clusters and to assess the agreement among 

them by examining the distribution of the principal compo-

nents. This analysis was carried out with the “princomp” function 

from the R package “limma”. Subsequently, the findings were 

illustrated utilizing the “ggplot2” package for visual representa-

tion.

Survival analysis

The prognostic outcomes of patients with nasopharyngeal carci-

noma in different subsections were analysed using the “survival” 

software package. The survival outcome used was DFS to assess 

the prognostic predictive value of the proposed subtypes.

Evaluation of immune cell infiltration level

We applied the TIMER algorithm to assess the infiltration levels 

of several immune cell types, including macrophages, B cells, 

CD4 T cells, CD8 T cells, neutrophils, and dendritic cells (DCs), in 

NPC samples. Furthermore, the ESTIMATE algorithm, implement-

ed in R v4.3.2, was employed to estimate immune and tumor 

purity scores by analyzing the expression of a predefined gene 

set indicative of immune cell presence in tumor microenviron-

ment. The immune infiltration status of samples can be calculat-

ed using the ssGSEA algorithm provided in the R package GSVA, 

which employs markers for 24 types of immune cells (8,9). This 

approach allows for the quantification of immune cell fractions 

and the evaluation of their impact on tumor biology. 

Constructing and validating the prognostic risk signature

Here the Least Absolute Shrinkage and Selection Operator 

(LASSO) Cox regression method was employed to determine the 

genes and their corresponding coefficient values within the risk 

model. LASSO is an analytical approach that enhances model 

predictability and interpretability by selecting variables and 

applying regularization. It is particularly adept at developing 

prognostic models from gene expression data, as evidenced by 

references (10–14). GSE102349 was utilized as the validation set (15).

Chemotherapy and radiotherapy sensitivity evaluation

To assess risk models’ relationship of commonly used drug sen-

sitivity in NPC, we studied the NCI-60 cell line. We obtained drug 

sensitivity data, inhibitory concentration (IC50) values, from the 

CellMiner database (16). We then analyzed 218 FDA-approved 

drugs and 574 drugs/compounds from trials. The impact of risk 

on drug sensitivity was evaluated using “impute” (17) and the 

“limma” (18) R package.

We investigated the effect of the risk model on radiotherapy 

sensitivity by evaluating radiotherapy tolerance in the internal 

cohort sample using the GSVA technique (9), with scores for each 

SUPPLEMENTARY MATERIAL

Contents
Supplementary experimental procedures

Supplementary Figure S1. (related to Fig. 3)

Supplementary Figure S2. (related to Fig. 4)

Supplementary Figure S3. (related to Fig. 4)

Supplementary Figure S4. (related to Fig. 6)

Supplementary Table S1. The sequencing coverage of each sam-

ple.

Supplementary Table S2. The quality statistics of each sample.

Supplementary Table S3. Coefficients for genes in the risk 

model. 

Supplementary experimental procedures

Detecting differentially expressed genes (DEGs) between 

NPC and normal tissues

The “limma” package (1) was utilized to identify differentially 

expressed genes (DEGs) in tumor versus normal tissues, setting 

a threshold of |log2 fold change| (|logFC|) > 1.5 and an adjusted 

p-value (P.adj) < 0.05. The “ggplot2” package was employed to 

visualize the volcano plot of DEGs (2).

Gene set variation analysis

Gene Set Variation Analysis (GSVA) was conducted using the 

“GSVA” package in R software (version 4.3.2) to compute path-

way scores for NPC samples on the basis of transcriptome data 
(3,4). GSVA evaluates gene expression levels within predefined 

gene sets, generating an enrichment score that reflects the 

overall activity of specific gene sets in each sample. Kyoto 

Encyclopedia of Genes and Genomes (KEGG) gene sets were 

employed for finer resolution of functional signature variations 

across samples (5).

Gene Ontology (GO) enrichment analysis

We performed gene set functional enrichment utilizing GO 

annotations from the R package org.Hs.eg.db (v3.1.0) to map 

genes to the background set (6). We used the R package clus-

terProfiler (v3.14.3) for enrichment analysis, with gene set sizes 

ranging from 5 to 5000 (7). Significance was determined by p < 

0.05 and false discovery rate (FDR) < 0.25.

Consensus clustering

Molecular subtypes were identified via consensus clustering 

using “ConcensusClusterPlus” in R software. Optimal clustering 

values (k = 2 to 10) were determined through 1,000 iterations to 

ensure result reproducibility and robustness.

Principal component analysis (PCA) 

PCA was conducted to examine the transcriptional profiles 
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tiger.canceromics.org/#/). This included our in-house cohort. We 

visually compared response proportions in high- and low- risk 

groups. In addition, the correlation between immune check-

point expression and risk score was computed to evaluate the 

treatment response with immune checkpoint inhibitors among 

patients with varying risk profiles.

sample calculated using the ssGSEA method in R (19).

Immunotherapy response prediction

To assess the predictive performance of the risk signature 

for immunotherapy response, we collected immunotherapy 

cohorts from the GEO database and the TIGER website (http://
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Figure S1. (A) Violin plots showing the immune score of GSE102349 cohort; (B) Box plot of 6 immune cell population score among three subtypes in 

GSE102349 validation cohort. Red boxes represent C
oriLyt

 subtype, blue boxes represent C
neg

 subtype, and green boxes represent C
EB1

 subtype.
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Figure S3. (A) Kaplan–Meier curves for patients with high- or low-risk scores in GSE102349 cohort. PFS is selected as a statistical indicator; (B) ROC 

curve showing the predictive value of NPC risk signature for 2-, 3-, and 4-year survival rates; (C) Violin plot showing risk scores between different clini-

cal stages in the GSE102349 cohort. ns, p > 0.05; *, p < 0.05. 

Figure S2. (A) The prognostic value of risk model in each subtype.
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Figure S4. (A) UMAP projection of single-cell dataset GSE150430, with distinct colors representing various cell clusters; (B) Bubble plot displaying 

marker expression across cell clusters; (C-F) Intercellular communication signals between macrophages and other cell subpopulations

Figure S5. Summary of key findings. In this study, three distinct subtypes were identified through reannotation of transcriptomic RNA-seq data using 

EBV sequences. These subtypes exhibit unique characteristics in prognosis, metabolic activity, and immune microenvironment. Based on these 

findings, a robust risk model was constructed, demonstrating high reproducibility and predictive accuracy for prognosis and treatment response. 

Additionally, M2 macrophages closely associated with EBV infection were identified as active contributors in cases with poor prognosis. 
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Sample Name Total Clean 
Read

Total Mapping 
Genome Ratio

Uniquely 
Mapping 

Genome Ratio

T1013A 23.48 76.88 58.36

T1016A 22.76 92.72 53.86

T1020A 22.78 94.41 65.6

T1023A 23.23 93.71 64

T1024A 23.72 94.77 69.08

T1026A 23.53 93.67 71.08

T1056A 23.78 95.6 71.12

T1058A 23.56 92.81 70.7

T1060A 20.64 86.85 66.28

T1061A 23.57 93.41 63.33

T1063A 23.78 93.27 55.24

T1067A 23.82 95.02 68.88

T1079A 23.84 93.68 57.38

T1082A 23.78 93.61 53.05

T1084A 23.08 92.25 69.41

T1085A 23.62 95.54 74.96

T1088A 15.21 79.61 57.36

T1089A 23.21 95.61 71.77

T1090A 25.37 86.96 65.45

T1091A 23.52 91.12 71.79

T1094A 23.15 89.64 64.96

T1096A 23.62 94.53 74.27

T1098A 23.77 94.9 68.15

T1104A 23.78 94.97 72.82

T1106A 23.72 95.44 71.77

T1108A 23.89 71.26 50.84

T1109A 23.66 94.58 71.67

T1112A 23.79 94.56 71.64

T1113A 23.62 94.4 69.19

T1114A 23.67 90.8 65.87

T1115A 23.78 94.62 72.08

T1119A 23.84 94.32 67.97

T1121A 23.78 94.43 73.52

T1123A 23.66 94.03 60.26

T1125A 22.98 91.09 68.62

T1127A 24.06 85.69 58.24

T1130A 23.73 92.1 64.37

T1136A 23.54 87.08 65.69

T1140A 23.67 95 69.97

T1142A 23.65 94.39 71.94

T1147A 21.03 89.78 67.16

T1148A 23.59 94.27 68.64

T1150A 23.71 95.06 71.9

T1152A 23.29 88.6 66.38

Table S1. The sequencing coverage of each sample.

Sample Name Total Clean 
Read

Total Mapping 
Genome Ratio

Uniquely 
Mapping 

Genome Ratio

N1307A 23.87 94.34 72.13

N1311A 23.66 94.06 74.75

N1314A 23.68 94.76 71.22

N1319A 23.88 94.89 73.1

N1322A 20.18 94.55 73.05

N1331A 19.9 94.91 67.69

N1341A 23.43 90.68 66.7

N1354A 22.31 82.07 61.79

N200A 23.72 94.83 73.61

N201A 23.74 94.6 69.51

N202A 22.12 95.07 75.8

N203A 23.73 94.61 68.95

N204A 23.7 93.57 68.89

N205A 23.77 94.53 69.78

N206A 23.64 91.44 66.91

N207A 21.68 95.17 75.63

N208A 24.49 82.74 61.72

N209A 23.43 90.64 67.4

N210A 23.86 95.32 73.73

N211A 21.73 89.71 59.98

N213A 23.62 86.82 64.21

N214A 23.43 87 61.33

N215A 23.75 94.41 67.87

N216A 23.47 88.13 66.82

N217A 23.84 95.25 73.99

N218A 22.72 87.14 62.35

N219A 23.82 94.39 62.77

N631A 23.77 95.46 75.32

N633A 23.73 95.06 76.95

N634A 23.45 95.46 73.36

N635A 23.52 93.26 55.35

N637A 23.69 94.16 66.13

N638A 23.87 95.21 73.44

N640A 23.86 93.03 70.54

N641A 23.86 95.4 78.87

N642A 23.86 94.13 70.16

N649A 23.75 95.87 75.95

N651A 23.87 95.59 76.87

N654A 23.82 95.29 75.52

T1000A 23.87 93.17 67.96

T1005A 23.06 83 58.1

T1007A 23.73 94.46 74.99

T1008A 23.26 91.39 71.87

T1010A 20.1 95.52 76.48
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Sample Name Total Clean 
Read

Total Mapping 
Genome Ratio

Uniquely 
Mapping 

Genome Ratio

T1155A 23.63 93.99 63.27

T1156A 23.31 92.97 70.88

T1159A 23.48 94.83 74.07

T1161A 23.61 92.04 58.22

T1163A 19.63 76.87 57.46

T1164A 23.65 95.06 67.97

T1167A 23.37 93.76 65.69

T1168A 23.77 95.61 75.85

T1169A 23.24 83.53 62.47

T1172A 23.77 93.73 72.94

T1174A 23.68 90.66 61.45

T1179A 23.73 94.33 73.54

T1180A 21.09 92.96 60.33

T1181A 23.84 95.42 77.16

T1189A 23.06 94.49 70.22

T1190A 23.61 93.56 70.69

T1191A 23.72 94.32 70.57

T1193A 23.64 92.48 71.53

T1195A 23.54 93.39 63.21

T1199A 17.71 88.4 68.97

T1283A 23.43 94.47 66.37

T1284A 21.99 89.91 60.79

T1285A 23.5 92.75 74.06

T1286A 19.66 94.92 72.67

T1289A 23.46 93.93 64.1

T1291A 23.87 95.44 74.14

T1292A 23.39 94.23 68.67

T1295A 23.45 95.2 74.16

T1296A 23.39 94.92 74.82

T1297A 23.16 89.32 53.93

T1298A 22.82 93.65 72.57

T1299A 23.87 94.15 70.31

T1300A 23.45 93.73 73

T1301A 23.39 94.42 67.69

T1302A 23.49 94.74 69.76

T1303A 23.78 94.85 70.96

T1305A 23.44 94.14 68.37

T1306A 23.62 93.71 74.26

T1308A 23.53 92.38 68.05

T1309A 23.55 92.72 69.76

T1310A 23.54 92.52 69.29

T1313A 23.8 96.16 75.93

T1316A 21.32 93.73 74.79

T1317A 23.78 95.96 76.49

Sample Name Total Clean 
Read

Total Mapping 
Genome Ratio

Uniquely 
Mapping 

Genome Ratio

T1318A 23.76 91.03 53.28

T1321A 19.64 93.43 70.03

T1323A 23.79 95.56 73.58

T1324A 20.15 89.48 70.19

T1325A 23.58 90.09 57.18

T1326A 23.81 94.33 74.09

T1327A 23.55 93.47 72.67

T1328A 23.58 92.53 67.47

T1329A 23.53 93.77 72.77

T1330A 21.97 92.08 61.8

T1333A 18.54 85.78 56.1

T1335A 23.87 94.83 73.97

T1337A 21.89 92.46 64.28

T1338A 23.78 95.52 72.36

T1339A 23.52 92.83 70.75

T1340A 23.55 92.74 70.44

T1342A 23.87 95.94 81.88

T1343A 23.8 95.87 74.74

T1346A 23.78 96.03 75.58

T1347A 23.78 95.06 73.8

T1349A 23.7 95.43 75.9

T1352A 23.81 94.78 73.02

T1355A 23.78 94.61 73.67

T636A 23.62 95.56 77.26

T639A 24.07 82.3 54.88

T648A 23.68 95.13 71.1

T653A 21.83 93.45 65.86

T658A 23.65 95.35 72.75

T667A 23.64 94.32 73.74

T670A 23.62 94.67 72.41

T685A 21.46 93.97 67.11

T751A 23.67 94.55 71.19

T754A 23.64 95.18 68.43

T757A 23.65 94.83 72.6

T763A 23.65 94.91 74.51

T764A 23.63 95.94 78.45

T774A 23.48 95.7 72.92

T775A 23.66 94.73 72.9

T785A 23.16 91.99 59.81

T806A 23.61 94.4 67.73

T810A 22.91 90.91 66.72

T820A 23.58 94.65 69.64

T821A 23.63 95.6 73.83

T823A 21.13 89.27 61.85

Table S1 continued. The sequencing coverage of each sample.
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Table S2. The quality statistics of each sample.

Sample Name Total Clean 
Read

Total Mapping 
Genome Ratio

Uniquely 
Mapping 

Genome Ratio

T827A 23.59 95.77 71.18

T831A 23.53 94.06 75.38

T842A 23.58 94.06 69.3

T848A 23.53 94.97 73.14

T857A 23.62 93.85 64.28

T858A 23.22 90.17 69.19

T861A 23.38 94.34 64.64

T863A 23.65 94.63 71.25

T865A 23.58 95.8 68.81

T869A 23.29 93.78 67.98

T879A 22.44 92.94 70.07

T895A 23.63 94.26 70.56

T897A 23.63 94.67 72.29

T899A 23.62 94.85 73.32

T905A 23.6 94.88 74.18

T907A 24.05 94.7 69.71

T915A 23.64 95.23 72.49

T925A 20.16 88.52 70.16

T933A 23.74 95.31 66.69

Sample Name Total Clean 
Read

Total Mapping 
Genome Ratio

Uniquely 
Mapping 

Genome Ratio

T935A 14.52 84.14 60.33

T943A 23.62 95.14 70.15

T944A 10.9 69.78 57.2

T948A 23.37 93.99 63.59

T951A 23.61 93.81 66.66

T953A 23.56 95.36 70.41

T956A 20.1 95.18 73.14

T957A 23.57 94.64 72.72

T959A 23.49 93.77 74.96

T960A 23.54 94.42 68.79

T961A 23.7 92.64 72.02

T967A 23.58 95.29 77.6

T972A 23.58 81.37 63.11

T974A 23.61 93.15 59.08

T977A 23.26 86.39 61.09

T984A 23.64 95 73.45

T986A 23.69 94.51 69

T997A 23.52 92.47 73.24

Table S1 continued. The sequencing coverage of each sample.

Sample Name Total Raw Reads Total Clean Reads Total Clean Bases Clean Reads Q20 Clean Reads Q30 Clean Reads Ratio

N1307A 23.92 23.87 1.19 97.93 93.83 99.78

N1311A 23.92 23.66 1.18 97.95 93.95 98.91

N1314A 23.92 23.68 1.18 98.05 94.17 98.97

N1319A 23.92 23.88 1.19 97.99 93.99 99.82

N1322A 20.23 20.18 1.01 97.99 93.99 99.75

N1331A 20.15 19.9 0.99 97.9 93.79 98.75

N1341A 23.92 23.43 1.17 97.95 93.97 97.92

N1354A 23.92 22.31 1.12 97.9 94.06 93.27

N200A 23.92 23.72 10.19 97.84 93.61 99.14

N201A 23.92 23.74 10.19 97.91 93.76 99.24

N202A 22.18 22.12 10.11 97.94 93.8 99.74

N203A 23.92 23.73 10.19 97.83 93.58 99.2

N204A 23.92 23.7 10.18 97.91 93.86 99.05

N205A 23.92 23.77 10.19 97.8 93.46 99.34

N206A 23.92 23.64 10.18 98.15 94.55 98.82

N207A 21.74 21.68 10.08 97.88 93.66 99.74

N208A 26.1 24.49 10.22 98.19 94.85 93.83

N209A 23.92 23.43 10.17 98.14 94.52 97.93

N210A 23.92 23.86 10.19 97.92 93.68 99.72
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Sample Name Total Raw Reads Total Clean Reads Total Clean Bases Clean Reads Q20 Clean Reads Q30 Clean Reads Ratio

N211A 22.42 21.73 10.09 98.34 95.01 96.93

N213A 23.92 23.62 10.18 98.11 94.48 98.75

N214A 23.92 23.43 10.17 98.2 94.73 97.96

N215A 23.92 23.75 10.19 97.92 93.76 99.29

N216A 23.92 23.47 10.17 98.17 94.62 98.09

N217A 23.92 23.84 10.19 98 93.95 99.67

N218A 23.92 22.72 10.14 98.1 94.49 94.96

N219A 23.92 23.82 10.19 98.1 94.26 99.56

N631A 23.92 23.77 10.19 98.2 94.59 99.38

N633A 23.92 23.73 10.19 97.81 93.5 99.17

N634A 23.92 23.45 10.17 97.78 93.45 98.03

N635A 23.92 23.52 10.18 98.09 94.36 98.31

N637A 23.92 23.69 10.18 97.76 93.32 99.02

N638A 23.92 23.87 10.19 98.27 94.76 99.76

N640A 23.92 23.86 10.19 98.15 94.49 99.74

N641A 23.92 23.86 10.19 98.07 94.3 99.73

N642A 23.92 23.86 10.19 98.11 94.37 99.76

N649A 23.92 23.75 10.19 97.86 93.62 99.29

N651A 23.92 23.87 10.19 98.11 94.3 99.76

N654A 23.92 23.82 10.19 97.63 92.99 99.56

T1000A 23.92 23.87 1.19 97.89 93.72 99.76

T1005A 26.1 23.06 1.15 97.92 94.13 88.36

T1007A 23.92 23.73 1.19 97.7 93.15 99.18

T1008A 23.92 23.26 1.16 97.76 93.48 97.21

T1010A 20.45 20.1 1.01 98.07 94.19 98.33

T1013A 26.1 23.48 1.17 97.93 94.17 89.98

T1016A 23.24 22.76 1.14 97.93 93.76 97.96

T1020A 23.14 22.78 1.14 97.93 93.74 98.47

T1023A 23.51 23.23 1.16 98 93.9 98.81

T1024A 23.92 23.72 1.19 98.01 93.94 99.14

T1026A 23.92 23.53 1.18 97.97 93.82 98.34

T1056A 23.92 23.78 1.19 97.92 93.63 99.41

T1058A 23.92 23.56 1.18 97.93 93.77 98.49

T1060A 21.57 20.64 1.03 97.78 93.59 95.7

T1061A 23.92 23.57 1.18 98.11 94.26 98.54

T1063A 23.92 23.78 1.19 97.96 93.75 99.4

T1067A 23.92 23.82 1.19 97.98 93.86 99.55

T1079A 23.92 23.84 1.19 97.96 93.79 99.67

T1082A 23.92 23.78 1.19 98.04 94.04 99.4

T1084A 23.52 23.08 1.15 98.02 94.08 98.1

T1085A 23.92 23.62 1.18 98.06 94.14 98.73

T1088A 15.91 15.21 0.76 98.22 94.86 95.63

T1089A 23.92 23.21 1.16 97.85 93.43 97.04

T1090A 26.1 25.37 1.27 97.94 94.02 97.2

T1091A 23.92 23.52 1.18 98.01 94.05 98.33

Table S2 continued. The quality statistics of each sample.
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Sample Name Total Raw Reads Total Clean Reads Total Clean Bases Clean Reads Q20 Clean Reads Q30 Clean Reads Ratio

T1094A 23.85 23.15 1.16 97.97 94.06 97.08

T1096A 23.92 23.62 1.18 97.95 93.8 98.75

T1098A 23.92 23.77 1.19 97.65 92.74 99.38

T1104A 23.92 23.78 1.19 97.85 93.5 99.38

T1106A 23.92 23.72 1.19 97.57 92.65 99.16

T1108A 29.8 23.89 1.19 97.8 93.89 80.16

T1109A 23.92 23.66 1.18 97.7 93.23 98.89

T1112A 23.92 23.79 1.19 97.73 93.14 99.45

T1113A 23.92 23.62 1.18 97.91 93.71 98.73

T1114A 23.92 23.67 1.18 98.05 94.2 98.93

T1115A 23.92 23.78 1.19 97.91 93.71 99.4

T1119A 23.92 23.84 1.19 97.9 93.59 99.66

T1121A 23.92 23.78 1.19 97.66 92.89 99.38

T1123A 23.92 23.66 1.18 97.87 93.5 98.9

T1125A 23.52 22.98 1.15 98.13 93.34 97.69

T1127A 26.1 24.06 1.2 97.82 93.84 92.19

T1130A 23.92 23.73 1.19 97.86 93.51 99.18

T1136A 26.1 23.54 1.18 97.78 93.65 90.19

T1140A 23.92 23.67 1.18 97.83 93.44 98.93

T1142A 23.92 23.65 1.18 97.8 93.55 98.86

T1147A 32.53 21.03 1.05 97.98 94.17 64.66

T1148A 23.92 23.59 1.18 97.76 93.24 98.61

T1150A 23.92 23.71 1.19 97.84 93.42 99.13

T1152A 23.92 23.29 1.16 98.02 94.19 97.34

T1155A 23.92 23.63 1.18 97.94 93.8 98.75

T1156A 23.92 23.31 1.17 98.22 94.7 97.44

T1159A 23.92 23.48 1.17 97.99 93.9 98.14

T1161A 23.92 23.61 1.18 97.74 93.27 98.68

T1163A 22.5 19.63 0.98 97.88 94.02 87.26

T1164A 23.92 23.65 1.18 97.81 93.48 98.84

T1167A 23.92 23.37 1.17 97.87 93.73 97.68

T1168A 23.92 23.77 1.19 98.02 93.94 99.35

T1169A 23.92 23.24 1.16 97.95 94.18 97.16

T1172A 23.92 23.77 1.19 97.9 93.88 99.36

T1174A 23.92 23.68 1.18 97.94 94.13 98.98

T1179A 23.92 23.73 1.19 97.9 93.83 99.18

T1180A 21.34 21.09 1.05 97.9 93.86 98.82

T1181A 23.92 23.84 1.19 97.8 93.35 99.67

T1189A 23.22 23.06 1.15 97.94 93.92 99.32

T1190A 23.92 23.61 1.18 97.85 93.7 98.68

T1191A 23.92 23.72 1.19 97.76 93.42 99.15

T1193A 23.92 23.64 1.18 97.99 94.11 98.81

T1195A 23.91 23.54 1.18 97.91 93.89 98.45

T1199A 19.1 17.71 0.89 98.1 94.4 92.73

T1283A 23.92 23.43 1.17 98.02 94.07 97.96

Table S2 continued. The quality statistics of each sample.
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Sample Name Total Raw Reads Total Clean Reads Total Clean Bases Clean Reads Q20 Clean Reads Q30 Clean Reads Ratio

T1284A 23.35 21.99 1.1 98.08 94.36 94.16

T1285A 23.92 23.5 1.18 98.18 94.57 98.25

T1286A 19.97 19.66 0.98 98.17 94.57 98.47

T1289A 23.92 23.46 1.17 98 93.95 98.07

T1291A 23.92 23.87 1.19 97.85 93.44 99.76

T1292A 23.92 23.39 1.17 97.96 93.94 97.79

T1295A 23.92 23.45 1.17 97.95 93.85 98.04

T1296A 23.92 23.39 1.17 98.11 94.32 97.77

T1297A 23.92 23.16 1.16 98.4 95.29 96.79

T1298A 23.92 22.82 1.14 97.99 94.08 95.39

T1299A 23.92 23.87 1.19 97.81 93.34 99.77

T1300A 23.92 23.45 1.17 98.06 94.26 98.03

T1301A 23.92 23.39 1.17 98.03 94.15 97.78

T1302A 23.92 23.49 1.17 98.1 94.31 98.19

T1303A 23.92 23.78 1.19 98.2 94.56 99.4

T1305A 23.92 23.44 1.17 98.16 94.54 97.98

T1306A 23.92 23.62 1.18 97.81 93.68 98.74

T1308A 23.92 23.53 1.18 97.8 93.71 98.36

T1309A 23.92 23.55 1.18 97.77 93.6 98.45

T1310A 23.92 23.54 1.18 98.03 94.41 98.41

T1313A 23.92 23.8 1.19 98.22 94.59 99.48

T1316A 21.72 21.32 1.07 98 94.22 98.13

T1317A 23.92 23.78 1.19 98.18 94.52 99.39

T1318A 23.92 23.76 1.19 98.18 94.51 99.3

T1321A 20.02 19.64 0.98 97.87 93.84 98.07

T1323A 23.92 23.79 1.19 98.17 94.43 99.42

T1324A 20.6 20.15 1.01 97.96 94.19 97.82

T1325A 23.92 23.58 1.18 97.94 94.1 98.56

T1326A 23.92 23.81 1.19 98.22 94.55 99.54

T1327A 23.92 23.55 1.18 97.84 93.75 98.42

T1328A 23.92 23.58 1.18 97.81 93.63 98.58

T1329A 23.92 23.53 1.18 97.88 93.91 98.36

T1330A 22.48 21.97 1.1 97.81 93.68 97.75

T1333A 19.05 18.54 0.93 98.02 94.42 97.28

T1335A 23.92 23.87 1.19 98.28 94.72 99.79

T1337A 22.3 21.89 1.09 97.95 94.11 98.17

T1338A 23.92 23.78 1.19 98.39 95.13 99.42

T1339A 23.92 23.52 1.18 97.79 93.71 98.33

T1340A 23.92 23.55 1.18 97.83 93.78 98.42

T1342A 23.92 23.87 1.19 98.16 94.4 99.78

T1343A 23.92 23.8 1.19 98.31 94.89 99.5

T1346A 23.92 23.78 1.19 98.26 94.74 99.39

T1347A 23.92 23.78 1.19 98.18 94.5 99.41

T1349A 23.92 23.7 1.18 97.68 93.12 99.06

T1352A 23.92 23.81 1.19 98.22 94.58 99.54

Table S2 continued. The quality statistics of each sample.
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Sample Name Total Raw Reads Total Clean Reads Total Clean Bases Clean Reads Q20 Clean Reads Q30 Clean Reads Ratio

T1355A 23.92 23.78 1.19 98.14 94.38 99.42

T636A 23.92 23.62 10.18 97.87 93.5 98.73

T639A 30.45 24.07 10.2 97.9 94.02 79.06

T648A 23.92 23.68 10.18 97.98 93.92 98.97

T653A 22.43 21.83 10.09 98.09 94.24 97.33

T658A 23.92 23.65 10.18 98.03 94.01 98.84

T667A 23.92 23.64 10.18 97.87 93.57 98.81

T670A 23.92 23.62 10.18 97.83 93.45 98.73

T685A 21.74 21.46 10.07 98.11 94.26 98.73

T751A 23.92 23.67 10.18 97.87 93.5 98.96

T754A 23.92 23.64 10.18 97.82 93.33 98.82

T757A 23.92 23.65 10.18 97.98 93.92 98.85

T763A 23.92 23.65 10.18 98.03 94.02 98.86

T764A 23.92 23.63 10.18 98.01 93.9 98.79

T774A 23.83 23.48 10.17 98.16 94.43 98.53

T775A 23.92 23.66 10.18 97.71 93.17 98.9

T785A 23.75 23.16 10.16 98.23 93.63 97.52

T806A 23.92 23.61 10.18 97.79 93.45 98.69

T810A 23.92 22.91 10.15 97.71 93.39 95.78

T820A 23.92 23.58 10.18 97.66 93.06 98.57

T821A 23.92 23.63 10.18 98.15 94.35 98.79

T823A 22.46 21.13 10.06 97.99 94.18 94.08

T827A 23.92 23.59 10.18 98.18 94.45 98.62

T831A 23.92 23.53 10.18 97.79 93.48 98.35

T842A 23.92 23.58 10.18 97.8 93.48 98.58

T848A 23.92 23.53 10.18 97.81 93.36 98.36

T857A 23.92 23.62 10.18 98.25 94.78 98.71

T858A 23.92 23.22 10.16 97.88 93.83 97.08

T861A 23.92 23.38 10.17 97.59 92.91 97.74

T863A 23.92 23.65 10.18 98.1 94.23 98.88

T865A 23.92 23.58 10.18 97.95 93.82 98.57

T869A 23.92 23.29 10.16 97.88 93.78 97.36

T879A 23.92 22.44 10.12 97.69 93.42 93.79

T895A 23.92 23.63 10.18 97.97 93.84 98.77

T897A 23.92 23.63 10.18 97.79 93.45 98.79

T899A 23.92 23.62 10.18 97.7 93.2 98.75

T905A 23.92 23.6 10.18 97.86 93.54 98.66

T907A 26.1 24.05 10.2 97.72 93.47 92.16

T915A 23.92 23.64 10.18 97.97 93.9 98.8

T925A 20.87 20.16 10.01 97.85 93.88 96.6

T933A 23.92 23.74 10.19 97.66 92.99 99.24

T935A 18.99 14.52 0.739 7.809 3.747 6.45

T943A 23.92 23.62 10.18 98.07 94.18 98.75

T944A 13.81 10.9 0.5497 0.4392 0.6278 0.93

T948A 23.92 23.37 10.17 98.21 94.64 97.69

Table S2 continued. The quality statistics of each sample.
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Sample Name Total Raw Reads Total Clean Reads Total Clean Bases Clean Reads Q20 Clean Reads Q30 Clean Reads Ratio

T951A 23.92 23.61 10.18 97.62 92.95 98.71

T953A 23.92 23.56 10.18 97.95 93.74 98.5

T956A 20.34 20.1 10.01 97.99 93.89 98.81

T957A 23.92 23.57 10.18 98.13 94.32 98.52

T959A 23.92 23.49 10.17 97.75 93.38 98.19

T960A 23.92 23.54 10.18 98 93.96 98.38

T961A 23.92 23.7 10.18 97.83 93.57 99.05

T967A 23.92 23.58 10.18 98.01 93.98 98.58

T972A 28.13 23.58 10.18 97.68 93.55 83.82

T974A 23.92 23.61 10.18 97.6 92.86 98.67

T977A 24.77 23.26 10.16 97.86 93.84 93.9

T984A 23.92 23.64 10.18 98.05 94.12 98.8

T986A 23.92 23.69 10.18 97.7 93.11 99.04

T997A 23.92 23.52 10.18 98.01 94.12 98.31

Table S2 continued. The quality statistics of each sample.

Table S3. Coefficients for genes in the risk model.

Gene Coef

BMPER 0.151506596

SPSB4 0.171909418

SLAMF9 0.328271716

CLEC4E -0.538517182

DKK1 0.001411042

IGSF1 0.345418968

RIMS2 1.098346519

SPP1 0.005621328

PTX3 0.070283848

CD276 0.379746233

BCHE 0.214988138

BMP2 0.089409309
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