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Abstract 
Olfactory dysfunction affects a large proportion of the general population and causes significant personal and societal burden. 

At present, there are limited treatment options available. Though as yet experimental and untested in people, olfactory implants 

are a novel form of neuroprosthesis, modelled on existing implants for other sensory deficits such as hearing loss. Advances in 

this field have been rapid, yet there have been no unified efforts to collate current knowledge or guide such advances towards 

maximum patient benefit. In this Opinion Paper, leaders in the field have come together to provide an overview of current and 

emerging knowledge and technology relating to olfactory implants. In an effort to guide innovation towards maximum patient 

benefit, we also provide expert agreed statements on theoretical clinical aspects of olfactory implantation, including patient se-

lection, implantation sites and potential complications, as well as post-implantation support requirements. Technical aspects will 

be discussed, with a clinical, device orientated focus. Finally, the ethics of olfactory implantation will be considered. We hope this 

document will serve as a useful roadmap to guide future clinical and basic research in the field. 

 
Key words: Olfaction, anosmia, hyposmia, olfactory implant, neuroproesthesis 

Whitcroft KL, Hernandez AK, Andrews P, et al. Rhinology 2025.    https://doi.org/10.4193/Rhin24.541

Abstracts



Contents

Abstracts             3

Abbreviations            5

Summary of statements           6

Introduction            8

What: a brief introduction to olfactory implants         9

Why: broad aims of olfactory implantation         10

Overview of document           10

Methodology            11

Olfactory implantation: clinical considerations and patient candidacy       11

 Background: what is olfaction and olfactory dysfunction       11

 The ideal patient for olfactory implantation        12

 Diagnosis of olfactory dysfunction and pre-implantation assessment      15

 Imaging            15

 Treatment of olfactory dysfunction prior to consideration of olfactory implantation    15

 Pre-implantation counselling          16

 Pre-operative assessment and possible contraindications       16

 Operative risks           17

 Post-implantation           17

Implants and stimulation: technology, techniques and potential pitfalls      19

 Stimulation targets           19

 Which electrodes?           25

 Where to place an energy source         27

Ethics of olfactory implantation          28

Conclusions            29

References            31

Appendices            36

 Appendix 1. More information on deep brain stimulation       36

 Appendix 2. Brain stimulation devices         37

SUPPLEMENT 35

4



Abbreviations
AP Action potential

CRS Chronic Rhinosinusitis

CSF Cerebrospinal Fluid

DBS Deep Brain Stimulation

ECoG Electrocorticography

ENT Ear Nose Throat (Otolaryngology)

OB Olfactory Bulb

OD Olfactory Dysfunction

OE Olfactory epithelium 

OFC Orbitofrontal Cortex

OI Olfactory Implant

OSN Olfactory Sensory Neuron

OT Olfactory training

PC Piriform Cortex

PIOD Post-infectious Olfactory Dysfunction

PTOD Post-traumatic Olfactory Dysfunction

sEEG Stereo-electro-encephalography

SND Sinonasal Disease
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Summary of statements 

Below is a summary of the statements contained within this 

document, and their associated Delphi outcome. 

Statement 1:

1. Factors to consider regarding eligibility for olfactory implant 

(OI), include: 

1.1. The degree of olfactory loss 

•   Delphi result: Agreed (score 7-9 = 100%, mean score 8.8)

1.2. Cause of olfactory loss

• Delphi result: Agreed (score 7-9 = 89.5%, mean score 8.2)

1.3. Duration of olfactory loss

• Delphi result: Agreed (score 7-9 = 87%, mean score 7.9)

1.4. Patients’ age / cognitive function

• Delphi result: Agreed (score 7-9 = 73.7%, mean score 7.6)

1.5. Volume of the olfactory bulb (OB) (particularly where the   

OB is stimulation target)

• Delphi result: No consensus (score 7-9 = 68.4%, 1-3 =  

13.2%, mean score 7.03)

1.6. Expectations and motivation of patient 

• Delphi result: Agreed (score 7-9 = 97.4%, mean score 8.5)

1.7. Socioeconomic support system to allow for post-opera-

tive olfactory rehabilitation

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 7.8)

Statement 2:

2. Patients being considered for OIs should undergo full clinical 

and psychophysical assessment in line with current guidelines. 

In brief, this should include:

2.1. Standard, detailed clinical history – with particular focus 

on establishing underlying cause of olfactory dysfunction 

(OD)

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.9)

2.2. Subjective olfactory assessment, ideally to include a 

validated questionnaire (e.g., Questionnaire of Olfactory Dys-

function) or other recognised form of subjective assessment 

(e.g. visual analogue scale [VAS]). Identification of parosmia 

is important, as this may be associated with higher rates of 

spontaneous recovery 

• Delphi result: Agreed (score 7-9 = 89.5%, mean score 8.4)

2.3. Full ear, nose, and throat (ENT) examination, including 

nasal endoscopy, with careful inspection of the olfactory cleft 

as anatomical variations may complicate potential electrode 

placement

• Delphi result: Agreed (score 7-9 = 97.4%, mean score 8.8)

2.4. Psychophysical assessment using a tool that has been 

validated for the target population and allows categorisation 

of severity. Ideally, this should test odour threshold and iden-

tification or discrimination.  

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.6)

2.5. Screening for cognitive impairment and psychiatric con-

ditions. Patients with positive screening tests should undergo 

further assessment.

• Delphi result: Agreed (score 7-9 = 89.5%, mean score 8.3)

Statement 3:

3. Patients being considered for OIs should undergo 

3.1. CT of the nose, paranasal sinuses and anterior cranial 

fossa to delineate bony anatomy.

• Delphi result: Agreed (score 7-9 = 97.4%, mean score 8.7)

3.2. High resolution magnetic resonance imaging (MRI) to 

cover the OBs, primary and secondary olfactory networks to 

delineate normal and abnormal anatomy and suitability for 

implantation.

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.7)

3.3. Angiography to delineate associated vascular structures 

at risk of injury during implantation.

• Delphi result: No consensus (score 7-9 = 55.3%, 1-3 = 

13.2%, mean score 6.6)

Statement 4:

4. All patients should have tried and failed existing treatments in 

line with current guidelines.

4.1. In all patients except those with sinonasal disease (SND), 

this should include an extended period of olfactory training 

(≥3 months).

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.4)

4.2. In suspected SND/idiopathic OD, a trial of systemic/intra-

nasal corticoste roids (with appropriate choice of intranasal 

delivery system) ± nasal surgery should be considered.

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.1)

Statement 5:

5. All patients being considered for OI candidacy should under-

go a period of multidisciplinary pre-implantation counselling.

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.2)

Statement 6:

6. Thorough pre-operative assessment should be undertaken in 

all patients in whom OI candidacy is considered. 

6.1. Absolute and relative contraindications can only be fully 

defined once device specifics are known, but are likely to 

include significant co-morbidity, blood dyscrasias and unfa-

vourable anatomy. More generally, individual patient factors 

should be considered when weighing potential benefits 
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versus risks of implantation.

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.3)

6.2. To mitigate the risk of complications patients should un-

dergo thorough pre-operative assessment/investigation, and 

surgery should be undertaken by experienced surgeons.

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.8)

6.3. Future studies, prototypes, or simulations should inform 

future surgical planning to minimise risk of complications and 

optimise outcomes.  

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.5)

Statement 7:

7. Patients should undergo a structured programme of olfactory 

rehabilitation post implantation 

7.1. This should include device programming with initial 

‘safety’ odours, followed by commonly encountered odours.

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.2)

7.2. Patients should receive multi-disciplinary support during 

this time.

• Delphi result: Agreed (score 7-9 = 97%, mean score 8.6)

7.3. Standardised outcome measure should be collected at 

regular post-implantation intervals, including psychophysi-

cal tests, patient-reported outcome measures, and tests for 

cognition/depression.

• Delphi result: Agreed (score 7-9 = 97%, mean score 8.8)

7.4. Complications monitoring including, where indicated, 

CT scans should be undertaken at regular post-implantation 

intervals where indicated.  

• Delphi result: Agreed (score 7-9 = 81.6%, mean score 7.9)

7.5. Standardised database reporting should be undertaken 

for safety, and ideally outcomes assessment including a 

position map of odours for possible optimization of electrode 

position.

• Delphi result: Agreed (score 7-9 = 97%, mean score 8.5)

Statement 8:

8. Efficacy of stimulated olfactory perception and impact of OD 

pathophysiology should be taken into account when conside-

ring potential stimulation sites:

8.1. Olfactory epithelium: only limited work has shown suc-

cessful olfactory perception following electrical stimulation. 

Inter-individual variation in distribution, and potential histo-

logical damage associated with OD, complicates stimulation 

at this site.

• Delphi result: Agreed (score 7-9 = 84.2%, mean score 7.7)

8.2. OB: work in animals and humans has demonstrated acti-

vation of the olfactory system following electrical stimulation. 

Glomerular ‘mapping’ in humans, and its degree of stereotypy, 

is at present unknown. Variations in size and shape associated 

with OD should be kept in mind when considering stimula-

tion in this site.

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.3)

8.3. Central olfactory networks: some work has demonstra-

ted olfactory perception following stimulation of upstream 

structures, though with low response rates. Central stimula-

tion may be favourable in patients with significant damage to 

the OB. The multi-modal nature of central structures should 

be kept in mind when considering the efficacy of stimulated 

olfactory perception and potential side-effects.

• Delphi result: Agreed (score 7-9 = 97%, mean score 8.3)

Statement 9:

9. Regarding OI electrodes and stimulation paradigm:

9.1. Where the OB is target, ideally, the device should be able 

to connect a high-density microelectrode array of electrodes 

to address single glomeruli, should be flexible and small, 

for transcranial or transcribriform approaches, and is easily 

deployed and secured around the OB. 

• Delphi result: Agreed (score 7-9 = 89.5%, mean score 8.1)

9.2. Where higher order olfactory structures are the target, 

currently available stimulation systems include depth elec-

trodes (deep brain stimulation [DBS]), microelectrodes, and 

electrocorticography (ECoG) devices, which require different 

surgical approaches.

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.3)

9.3. Ongoing research should address: the prolongation of 

microelectrode lifespan (through the lowering of electrode 

impedance and the use of novel material for electrodes and 

encapsulation); the reduction of foreign body reaction (mat-

ching the mechanical stiffness of conformal implants to the 

surrounding tissues and minimizing the electrode footprint); 

determining best method of implantation (single glomeruli, 

whole OB surface). 

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.6)

9.3.1. Active surveillance for complications secondary to 

persistent neurochemical, histological, and behavioural 

modifications resulting from electrode implantation should 

be undertaken.

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.7)

9.4. Stimulation timing, sequence of oscillations and potential 

multiplicity of target site require further study, e.g., respirati-

on-triggered sequences of oscillations aligned with specific 

time-locked electrical stimulation may best evoke reproduci-

ble olfactory precepts.

• Delphi result: Agreed (score 7-9 = 84.2%, mean score 8.0)

Statement 10:

10. The ethical implications of OI should be considered during 

research and development stages, as well as at the point of 

clinical application.

10.1. Patients should be consulted during the research/deve-

lopment phase to help inform device priorities.
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• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.6)

10.2. Standardized database reporting of surgical and device/

treatment related complications should be undertaken.

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.8)

10.3. Possibility of planned explantation of the device should 

be considered.

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.7)

Introduction
The human sense of smell is important. Intact olfaction is 

required to guide nutrition, environmental hazard avoidance 

and social communication (1). Accordingly, its dysfunction is 

linked with decreased quality of life, causing clinical depression 

in up to one third of patients (2). Moreover, olfactory dysfunction 

(OD) is linked with important healthcare outcomes, including 

neurodegeneration and death (3). The personal impact of OD is 

therefore significant. 

Prior to the global COVID-19 pandemic, the estimated popula-

tion prevalence of OD was 22% (2–5), of whom approximately 5% 

experience complete or near complete loss (anosmia). Different 

strains of SARS-CoV-2 have caused variable degrees of associa-

ted intercurrent acute and post-infectious dysfunction, meaning 

the true population prevalence of OD is dynamically evolving, 

and likely higher than these pre-pandemic figures. Neverthe-

less, using pre-pandemic estimates as a minimum, the societal 

burden of OD is significant – with anosmia being more common 

than profound deafness or blindness (5).

Despite this, prior to the pandemic, clinical and research interest 

in OD lagged behind other sensory impairments; total publicati-

ons are fewer in olfaction compared with other senses (Pub-

Med listings as of October 16, 2024: Vision – 267,787; Hearing 

– 173,941; Olfaction – 35,567) and the first Nobel Prize in this 

field was awarded to Linda Buck and Richard Axel in 2004 (6). 

Accordingly, intervention options for olfactory impairment are 

limited, particularly when compared to sensory impairments 

such as vision or hearing. In the latter, amplification technolo-

gies are commonplace: approximately 2 million people in the UK 

use hearing aids (6), and those with more significant or complex 

hearing loss may have access to implanted prostheses, including 

bone anchored hearing aids, middle ear implants, cochlear im-

plants and auditory brainstem implants. Almost three quarters 

of the UK adult population wear corrective lenses for refractive 

visual impairment. Approximately 10 million cataract operati-

ons are performed globally each year (7,8). Visual prostheses are 

also an area of active research – with various ongoing projects 

targeting different sites along the visual pathway (from retina 

to visual cortex) (9). Though much less common than cochlear 

implants, several retinal implants have received regulatory ap-

proval for use in patients. 

Whilst the technology for detection of environmental odours 

exists, as does that required for electrical stimulation along the 

olfactory pathway – a unified olfactory implant (OI) is a relatively 

novel idea, with the first patent in this field being awarded to 

Costanzo and Coelho in 2016 (Figure 1) (7). With the recent SARS-

CoV2 pandemic-driven interest in OD, subsequent progress 

has, however, been rapid, with different international projects 

bringing experts in the field together.
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Putative OIs are currently modelled on neuroprostheses in 

other sensory modalities. In hearing, vision or the vestibular 

sense, such devices are structured around two components: 

first, sensors that can detect environmental stimuli (sounds, 

visual images, movements; odorant molecules for olfaction); 

second, processors and stimulators that translate this informa-

tion into electrical impulses, which can be interpreted by the 

brain. In olfaction, the historical development of these two basic 

components, or modules, took place independently, in fields of 

research that rarely or never intersected.  

The sensor module was first conceptualised by Persaud and 

Dodd in 1982 (8), who demonstrated that a network of electronic 

chemosensory sensors can be used to discriminate between 

simple and complex odours. These initial efforts sparked a 

series of projects, ultimately leading to the development of 

several types of artificial noses for applications in environmen-

tal monitoring, healthcare diagnostics, food quality control 

and safety. Typically, these sensors consist of a set of units that 

interact with volatile molecules carried by an air source (9,10). 

Depending on the system, these sensors have traditionally 

comprised materials such as metal/oxide semiconductors, cata-

lytic gases, solid electrolyte gases, polymers, or optical devices. 

Whilst such sensors vary in form and dimension depending 

on the technology used, sizes small enough to be contained 

within ‘wearable’ devices have already been achieved (11). With 

advancing technology, more ecological ‘bioelectric noses’ have 

been developed, whereby the sensor contains specific olfactory 

receptors. Reaction of odorants with these receptor(s) results in 

signal generation, which is then transduced and processed for 

pattern recognition, which allows visualization of results based 

on a given classification system – whose accuracy and reliability 

depend on the quality and comprehensiveness of the data used 

to train the device (12). In 2006, olfactory cell-based biosensors 

were developed, incorporating a system of microelectrodes to 

measure extracellular membrane potential changes generated 

by the interaction of olfactory receptors with odorants (13). More 

recently, nanovesicles, created from cells or proteins related to 

signal transmission, have been used to replicate receptor-me-

diated signal transmission as observed in the human olfactory 

system (14). For a more comprehensive overview of the history 

and development of bioelectronic noses, please refer to recent 

articles (12,15).

Regarding the neural stimulation module, knowledge in this 

field is limited, and has been generated largely by the neurosci-

entific community. In 1954, Penfield and Jasper demonstrated 

olfactory perception following electrical stimulation of the 

olfactory bulbs (OBs) of patients with epilepsy (16). Following 

on from this, olfactory perception has also been demonstrated 

through electrical stimulation of other sites, including the olfac-

tory epithelium, and upstream structures of the central olfactory 

networks. Each of the approaches described have their own as-

sociated advantages and disadvantages, and the success of their 

resultant olfactory perception appears dependent not just on 

stimulation target, but also on other aspects of the stimulation 

paradigm used.    

Clinically useful OIs must combine cutting edge technology in 

both sensor and stimulation modules (Figure 2), in a way that 

Figure 1. Historical overview of the development of the first patent for an ‘olfactory implant system’, issued to Costanzo and Coelho, Virginia Com-

monwealth University, 2016.

What: a brief introduction to olfactory implants 
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is safe and useful to patients. Precise stimulation target and 

surgical approaches to implantation – such as transcribriform 

or transcranial approaches, will be discussed in the following 

sections. 

The needs of patients with OD range from comparatively simple, 

to highly complex. Identification of odours such as smoke, natu-

ral gas or its additives (e.g. mercaptan) or by-products of spoiled 

foods could help to prevent household accidents and illness, 

particularly in people with anosmia or more severe hyposmia (17).  

More complex olfactory perception – such as is required for food 

enjoyment or social communication may be more difficult to re-

plicate initially, in part due to the highly personal nature of such 

perception - which heavily relies on autobiographical/episodic 

memory and consequently ‘higher processing’. However, replica-

tion of these more complex functions separates OI from existing 

‘bioelectronic noses’, or devices that can detect environmental 

odours and alert patients with OD to their presence (12). Whilst 

these devices may be helpful in environmental navigation and 

hazard avoidance, their use is limited to this. Through replication 

of the personal sensory experience of smell, olfactory implan-

tation could impact on nutrition, mood and ultimately quality 

of life (1). Furthermore, given the known link between OD and 

various medical conditions, such as neurodegeneration (18) and 

frailty (19), augmentation of the olfactory system through implan-

tation could theoretically affect outcomes in these patients.

Accordingly, an early aim of the prototype olfactory implant is 

to provide levels of olfactory perception as would be required 

for environmental hazard avoidance. This is in line with recent 

survey results showing that patients prioritize regaining percep-

tion needed for environmental hazard avoidance, including the 

ability to detect spoiled foods (20,21). However, with personalised 

device programming and advancing technology the ultimate 

aim of olfactory implantation is to produce levels of sensory 

function that allow meaningful appreciation of the recipient’s ol-

factory environment. Later aims of OI may include characterisa-

tion of the downstream effects of olfactory system stimulation, 

for example on nutrition, mood, frailty and neurodegeneration. 

Overview of document
The following document provides an overview of current and 

emerging knowledge and technology relating to OIs. In an effort 

to guide innovation towards maximum patient benefit, we pro-

vide expert agreed statements on theoretical clinical aspects of 

olfactory implantation, including patient selection, implantation 

sites and potential complications, as well as post-implantation 

support requirements. Technical aspects will be discussed, with 

a clinical, device orientated focus. Finally, the ethics of olfactory 

implantation will be considered. 

Figure 2. Schematic drawing of the principles of an OI system. Possible targets include the olfactory epithelium, olfactory bulb, piriform cortex, orbito-

frontal cortex, amygdala, hippocampus, insula, and nucleus accumbens.

Why: broad aims of olfactory implantation
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The current literature was systematically reviewed for relevant 

topics until July 2024. Databases included Medline (PubMed in-

ception – current), Google Scholar (limited to first 1000 results), 

Embase (Jan 1958 – current), as well as the preprint servers Me-

dRxiv and BioRxiv. Search terms were constructed using trunca-

tion, Boolean operators and MeSH mapping, as appropriate. 

Reference lists and citing literature were hand-searched. Finally, 

steering group discussions were undertaken at the meetings in 

Dubai in January 2023 and a specific Meeting on Olfactory 

Implants, Geneva, Switzerland in December 2023. 

All included statements underwent a process of agreement 

using a modified Delphi process (RAND/UCLA methodology). 

Statements were initially drafted by the steering group and 

distributed to all co-authors for review. Authors were asked to 

score their agreement with the statements based on a category 

scale (1 – lowest level of agreement – to 9 – highest level of 

agreement). Results were classified as follows:

Agreed: ≥70% score 7-9, ≤15% score 1-3

Disagreed: ≥70% score 1-3, ≤15% score 7-9 

No consensus: results falling between agreed and disagreed

Background: what is olfaction and olfactory dysfunc-
tion
Under normal physiological circumstances, the human sense of 

smell requires intact peripheral and central olfactory networks. 

Following diffusion into the olfactory mucus layer within the 

nose, odorants activate olfactory receptors – G protein cou-

pled receptors found on the dendritic cilia of olfactory sensory 

neurons (OSNs) (22). This interaction is thought to be affected by 

components within the mucus itself, including odorant binding 

proteins, and a variety of other solutes that may aid in odorant 

metabolism (23,24). The OSN are located within the olfactory 

epithelium of the olfactory cleft, and their axons (which col-

lectively form Cranial Nerve 1) extend through the foramina of 

the cribriform plate to the OB, where they synapse with second 

order neurons (mitral and tufted cells) within specialised cellular 

regions called glomeruli. Mitral and tufted cell axons then ex-

Methodology

Olfactory implantation: clinical considerations and patient 
candidacy 

Figure 3. Overview of peripheral and central olfactory networks (modified from ref 18). OE = olfactory epithelium, OB = olfactory bulb.

tend to regions of the primary olfactory network, which in turn 

connects with the secondary olfactory network (25) (Figure 3).

During normal homeostatic conditions, and in response to 

injury (important given their exposed position), OSN are capable 

of regeneration from a population of stem cells found within the 

OE. Such neurogenesis continues into adulthood (26) and mir-

rors, at least in non-human mammals, neurogenesis within the 

subventricular zone and the OB (27). Impairments in this regene-

rative potential by certain pathological conditions, can also lead 

to OD and, in addition, underlie spontaneous recovery in some 

conditions, such as post-infectious OD (25). 

The mechanisms by which odour quality is encoded have not 

yet been fully delineated. Whilst the human olfactory receptor 

(OR) gene family comprises approximately 400 active genes, 
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people can potentially detect millions of distinct odorants (28–30). 

This is in part facilitated by complex combinatorial encoding 

– wherein odour ligands are recognised by a unique combina-

tion of OR, and at which they may function as agonists, partial 

agonists or antagonists. Consequent ‘neural fingerprints’ are 

likely further augmented by the unique spatiotemporal charac-

teristics of odour binding, which are determined by an odour’s 

physiochemical properties and those of the nose, nasal mucus 

layer and OR. Based on rodent models, each glomerulus receives 

axons from OSNs expressing the same OR type (31,32) – in this 

way, the pattern and timing of glomerular activation may reflect 

odour quality, though it is unclear whether this is stereotyped 

between people. Further tuning of the neural signal may involve 

top-down input and other excitatory or inhibitory modulation 

at the level of the primary or secondary olfactory networks. In 

short, the precise pattern of neural activation and subsequent 

perceptual quality associated with a particular odour is difficult 

to predict. Therefore, a patient with an OI is likely to undergo 

trial and error sessions for implant programming or ‘calibration’.

Regarding airflow, olfaction is possible through two routes: or-

thonasal olfaction allows detection of environmental odours via 

antero-posterior airflow (as in breathing/sniffing) and retronasal 

olfaction allows detection of odours located within the mouth 

and oropharynx through postero-anterior airflow (facilitated 

by chewing/swallowing) (25). Integration of retronasal olfaction 

with gustatory, chemesthetic and somatosensory sensations 

forms the basis of the flavour percept. Patients with OD usually 

experience impairment of both orthonasal and retronasal per-

ception – though in some cases differential levels of impairment 

may occur. Further, due to its role in the flavour percept, many 

patients with OD report this as abnormal or impaired ‘taste’. 

Olfactory dysfunction can be broadly divided into quantitative 

and qualitative dysfunction. The former describes alteration 

in the intensity of odours (hyposmia – reduced perception, 

anosmia – absent perception), whilst the latter describes either 

altered perception of odour quality (parosmia), or perception 

of odour in the absence of an odour stimulus (phantosmia) (33). 

The alterations of odour quality in qualitative dysfunction are 

usually described as unpleasant. In most cases, quantitative and 

qualitative OD co-exist. Parosmia and phantosmia also often 

occur together, but may also occur independently. See Table 1 

for a full set of definitions.

Whilst OD can be attributed to numerous different underlying 

causes, pre-pandemic work from specialist centres showed 

that (excluding age-related OD), approximately two-thirds of 

cases were due to sinonasal, post-infectious or post-traumatic 

aetiologies. These, and other common causes of OD are listed in 

Table 2 (34,35):

The ideal patient for OI
The ideal candidate for implantation cannot be fully defined 

without knowledge of device specifics, such as stimulation 

target and surgical approach. At this early stage, therefore, 

candidacy can only be discussed in general terms. With this in 

mind, the following should be considered.

Orthonasal 
olfaction

The perception of odorants anteriorly due to 
airflow from the nostrils to the olfactory clefts, 
e.g., during sniffing

Retronasal 
olfaction

The perception of odorants located within the 
oropharynx, caused by airflow to the olfactory 
clefts via the nasopharynx during swallowing or 
nasal exhalation

Normosmia Normal olfactory function  

Hyposmia Quantitatively reduced olfactory function

Anosmia Quantitatively reduced olfaction to the extent 
that the subject has no function that is useful 
in daily life

Hyperosmia Quantitatively increased ability to smell odours

Olfactory 
intolerance

Qualitative olfactory dysfunction where 
individuals, without odour distortions, complain 
of a subjectively enhanced sense of smell and 
are intolerant to everyday odours

Parosmia Qualitative olfactory dysfunction where indivi-
duals, without odour distortions, complain of 
a subjectively enhanced sense of smell and are 
intolerant to everyday odours

Phantosmia Qualitative dysfunction in the presence of an 
odorant (i.e., distorted perception of an odour 
stimulus)

Phantosmia Qualitative dysfunction in the absence of an 
odorant (i.e., an odorant is perceived without 
concurrent stimulus, an ‘olfactory hallucination’)

Table 1. Definitions, adapted from (1,2).

Table 2. Common causes of OD.

Condition Examples (where relevant)

Sinonasal disease (SND) e.g. Chronic rhinosinusitis 
(± nasal polyposis)

Post-infectious OD e.g. SARS-CoV-2 and non-SARS-
CoV-2 pathogens (PIOD)

Post-traumatic OD

Aging

Neurological disease e.g. Parkinson’s and Alzheimer’s 
disease

Congenital OD

OD associated with drugs/toxins

Idiopathic OD

Other e.g. iatrogenic, tumours, systemic 
co-morbidities etc.
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1) The degree and type of olfactory loss 

An important question is whether OI should only be considered 

for people with complete anosmia or also in people with some 

remaining olfactory function. The former is most often found 

in relation to head trauma, or congenital anosmia (36). In other 

aetiologies, for example in PIOD – it is unclear how many pa-

tients have no residual function, as many report vague olfactory 

sensations that are difficult to describe, and almost impossible 

to capture using current olfactory tests (34).  Indeed, the presence 

or absence of olfactory perception cannot be objectively deter-

mined with absolute certainty, even through use of our most 

advanced available techniques (including functional neuroima-

ging and olfactory event-related potentials, in which both false 

positives and false negatives are seen (37)). Therefore, if complete 

anosmia is a required criterion for OI candidacy (with associated 

patient motivation being higher in this group (38)) careful assess-

ment is needed, as will be described below. 

In early phases of development, achievable olfactory perception 

and consequent benefit to risk ratio may not be sufficient to jus-

tify implantation in patients with milder degrees of impairment. 

However, as with cochlear implants, advances in technology (i.e., 

decreasing implantation risks leading to broader indications) 

may mean such patients will be eligible in the future. 

The presence of purely quantitative, qualitative or mixed 

olfactory impairment should also be considered. In patients 

with severe quantitative dysfunction, the presence of parosmia 

indicates residual olfactory function (39), and possibly a better 

chance of spontaneous recovery than in those with anosmia 

without parosmia (40–43). It should be noted, however, that the un-

derlying pathophysiology of parosmia and phantosmia remains 

unknown. Considering the ‘miswiring hypothesis’ of parosmia (in 

which incorrect or incomplete axonal targeting from OSN to OB 

is thought to occur) – though speculative – the possibility that 

such patients could have more negative/unpleasant percepts 

following implantation should be considered (44). At present, 

therefore, it is unclear whether patients with purely qualita-

tive dysfunction would benefit from implantation, and further 

research in this patient group is needed.  

2) The cause of olfactory loss 

Although more specific considerations require details of the 

device to be implanted, the cause of OD will affect OI candidacy. 

Underlying pathophysiology and its associated anatomical ± 

functional effects on the peripheral/central olfactory system 

may both affect long term prognosis and suitability for stimu-

lation at different sites. For example, in OD associated with 

chronic rhinosinusitis (CRS), pathophysiology is thought to be 

due to initial inflammatory-related dysfunction at the level of 

the OR, followed by eventual histological remodelling of the 

olfactory epithelium (OE) ± upstream neuroanatomical changes 

in regions such as the OB (45–50). Accordingly, both general and 

olfactory-specific outcomes are better when treatment is started 

early, though recovery after long periods of established disease 

is possible. Stimulation at the OE may not be appropriate or 

effective in people with marked ongoing inflammation, though 

bypassing sinonasal disease (for example refractive polyps or 

scarring due to previous surgery) through stimulation at the 

OB or further upstream, may potentially be of interest. In PIOD, 

though pathophysiological mechanisms are still being explo-

red, potentially reversible damage at the level of the OR ± OE 

likely occurs early in the disease process, which is followed by 

histological remodelling and potential upstream neuroanatomi-

cal changes (51). Spontaneous recovery occurs relatively fre-

quently in PIOD, likely due to reversible early pathophysiology 

± ongoing or renewed neurogenesis. Indeed, it is thought that 

one third or more of patients experience spontaneous recovery 

within the first 2-3 years of disease (52,53). Similar to CRS, stimu-

lation at the OE may not be effective due to underlying disease 

mechanisms, although this is a theoretical possibility at this 

time. In conditions in which spontaneous recovery is possible, 

device adaptations to allow such recovery to occur unincumbe-

red should be considered.

The prognosis in other aetiologies of OD is more guarded. In 

PTOD, whilst some degree of recovery has been suggested in 

up to 30% of patients, full recovery is unusual (54–58). This likely 

relates to the underlying mechanisms of OD after head injury – 

which vary from OSN axonal transection to intra-parenchymal 

haemorrhage, contusion, and gliosis. Whilst ongoing neuro- and 

axonogenesis may allow reconnection of OSN to the OB, scar 

tissue at the level of the cribriform plate may impair this process, 

with central lesions being potentially permanent. However, 

case reports exist suggesting that delayed recovery is possible 

in select cases of PTOD (59). Therefore, in addition to duration of 

OD, patients with PTOD should undergo sufficient investiga-

tion to delineate central lesions and their possible interference 

with either the implantation device itself, or upstream olfactory 

processing. 

The exact pathophysiology underlying OD due to aging or 

neurodegeneration are not fully understood.  However, it likely 

involves either widespread progressive changes or primarily 

central mechanisms.  Currently, there is no way to reverse the 

degeneration that has already occurred. Similar to PTOD, central 

pathology may prevent appropriate upstream olfactory proces-

sing. Implantation for the purposes of olfactory perception in 

these patients would likely represent a more complex challenge. 

Similarly, patients with congenital OD, in whom central proces-

sing is likely to be divergent from those with normal develop-

mental olfaction, it is unclear whether stimulation at the OE / 
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OB (in cases of hypoplastic OBs) or even higher order structures 

would produce olfactory perception comparable to patients 

with acquired loss. 

(3) The duration of olfactory loss

In patients eligible for OI, their impairment should be of suf-

ficient duration that spontaneous recovery, or recovery through 

treatment, is unlikely. As outlined above, in conditions such as 

PIOD recovery usually occurs within the first 2-3 years of disease. 

Indeed in medico-legal investigations, 2 years is commonly cited 

as the duration beyond which recovery is unlikely (60). Given the 

invasive nature of OI, and potential associated risks, a minimum 

duration of more than 2-3 years from onset of OD would be a 

prudent duration prior to consideration of OI candidacy except 

in cases of intentional intraoperative sacrifice of olfactory 

structures where total bilateral loss is expected. However, the 

rare possibility of spontaneous recovery after this point should 

be explained and discussed with all patients being considered 

for OI. Minimum levels of treatment prior to consideration of OI 

will be discussed in the section on Treatment of OD Prior to Con-

sideration of OI. With this in mind, it should also be considered 

that, similar to hearing, a longer period of sensory deprivation 

could lead to reorganization of central olfactory structures (e.g. 

lower grey matter), thus reducing performance of OI rehabilita-

tion. Furthermore, the OB over time may become hypoplastic, 

making implantation very difficult (61,62). Therefore, very long 

durations of OD may not be favourable for implantation. 

(4) Age and comorbid status

Studies focusing on hearing have demonstrated that the brain 

retains some neuroplasticity even up to advanced age (63). 

Although ageing is associated with worse olfactory function 
(64), older individuals have been shown to benefit from olfactory 

training, not only in terms of improvements in olfactory function 

but also in verbal function and subjective well-being (65). Howe-

ver, some work has demonstrated no such effect for age in rela-

tion to improvements in OB volume after olfactory training (66). 

Depending on the actual device installed and the amount of 

surgery required, patients eligible for OI should be otherwise 

generally healthy, sufficient at least to undergo the general an-

aesthetic required during surgical implantation, and to support 

good cognitive adaptation to their device thereafter. General 

health and cognition tend to deteriorate with age – and though 

a maximum age for implantation would be arbitrary – those of 

more advanced age should be carefully screened and normal 

scores in standard cognitive tests should be obtained.

(5) The condition of the OB

Where the OB is the stimulation target, its volume and shape 

should be assessed. It has been shown that OB volume de-

creases in relation to the degree and the duration of olfactory 

loss, although this does not necessarily directly correlate with 

outcomes in OD. Most patients with congenital anosmia have 

agenesis of the OB (67,68), and in many patients with PTOD, the 

OBs are not visible in MRI scans (69,70). However, OB volume has 

been shown to increase in association with improved olfactory 

function (71). 

As a rule, in candidates being considered for implantation using 

the OB as target, the OBs should be visible on high resolution 

MRI.   

(6) Patient expectations and motivation

Initial survey work has suggested that approximately one-third 

of patients with OD would consider OI, even if this involved a 

neurosurgical approach (38). With greater knowledge of available 

devices and implantation technique, and thereby more detailed 

counselling, this proportion could potentially change. 

(7) Social/economic support for ongoing rehabilitation 

If the patient qualifies for 1.1 through 1.6, but does not have the 

appropriate socioeconomic support to enable return for post-

operative rehabilitation, they might not be considered a good 

candidate.  For comparison, this is critical in cochlear implant 

candidacy (72,73). 

Statement 1:

1. Factors to consider regarding eligibility for olfactory implant 

(OI), include: 

1.1. The degree of olfactory loss 

•   Delphi result: Agreed (score 7-9 = 100%, mean score 8.8)

1.2. Cause of olfactory loss

• Delphi result: Agreed (score 7-9 = 89.5%, mean score 8.2)

1.3. Duration of olfactory loss

• Delphi result: Agreed (score 7-9 = 87%, mean score 7.9)

1.4. Patients’ age / cognitive function

• Delphi result: Agreed (score 7-9 = 73.7%, mean score 7.6)

1.5. Volume of the olfactory bulb (OB) (particularly where the   

OB is stimulation target)

• Delphi result: No consensus (score 7-9 = 68.4%, 1-3 =  

13.2%, mean score 7.03)

1.6. Expectations and motivation of patient 

• Delphi result: Agreed (score 7-9 = 97.4%, mean score 8.5)

1.7. Socioeconomic support system to allow for post-opera-

tive olfactory rehabilitation

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 7.8)

 

Diagnosis of OD and pre-implantation assessment
Olfactory function can be assessed using different techniques 

ranging from clinical history to functional imaging and elec-

trophysiology. Importantly, however, the accuracy of olfactory 
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assessment varies according to the technique employed. In 

particular, unstructured subjective assessment has been shown 

to poorly correlate with measured olfactory function. Accor-

dingly, all recent international guidelines recommend against 

use of isolated clinical history for the assessment of olfaction 
(43,74). Rather, subjective assessment should be combined with 

psychophysical testing, which is considered the clinical and 

research standard. Unfortunately, a recent survey of internati-

onal practice in the assessment of olfaction demonstrated that 

most clinicians do not perform psychophysical testing (75). This 

is problematic – inaccurate assessment may lead to incorrect 

diagnoses, inappropriate treatment planning and meaningless 

outcomes measurement. When considering invasive treatment 

strategies such as OIs, it is therefore imperative that potential 

patients are thoroughly assessed according to current guideli-

nes. Furthermore, assessment of severity of OD is important in 

order to guide OI candidate selection.

Statement 2:

2. Patients being considered for OIs should undergo full clinical 

and psychophysical assessment in line with current guidelines. 

In brief, this should include:

2.1. Standard, detailed clinical history – with particular focus 

on establishing underlying cause of olfactory dysfunction 

(OD)

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.9)

2.2. Subjective olfactory assessment, ideally to include a 

validated questionnaire (e.g., Questionnaire of Olfactory Dys-

function) or other recognised form of subjective assessment 

(e.g. visual analogue scale [VAS]). Identification of parosmia 

is important, as this may be associated with higher rates of 

spontaneous recovery 

• Delphi result: Agreed (score 7-9 = 89.5%, mean score 8.4)

2.3. Full ear, nose, and throat (ENT) examination, including 

nasal endoscopy, with careful inspection of the olfactory cleft 

as anatomical variations may complicate potential electrode 

placement

• Delphi result: Agreed (score 7-9 = 97.4%, mean score 8.8)

2.4. Psychophysical assessment using a tool that has been 

validated for the target population and allows categorisation 

of severity. Ideally, this should test odour threshold and iden-

tification or discrimination.  

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.6)

2.5. Screening for cognitive impairment and psychiatric con-

ditions. Patients with positive screening tests should undergo 

further assessment.

• Delphi result: Agreed (score 7-9 = 89.5%, mean score 8.3)

Imaging
With regards to imaging – significant heterogeneity in clinical 

practice exists. In attempt to address this heterogeneity, recent 

guidelines provided recommendations for diagnostic imaging. 

However, in patients being considered for OI, structural assess-

ment of the peripheral and central olfactory pathways should 

be undertaken, to include the nose, sinuses, OB, as well as the 

primary and secondary olfactory networks. Any abnormalities 

in these structures should be fully characterised, in order to 

determine such abnormalities’ impact on potential electrode 

placement and/or implant function.

Imaging should also be performed at the time of surgery (ideally 

intraoperatively ± immediately postoperatively), in order to pro-

vide detailed information about precise electrode contacts and 

thereby stimulation targets. Perioperative and postoperative 

CT, as well as preoperative high-resolution MRI could be used 

for this purpose, as well as to enable image-guided navigation 

system use. Pre-operative angiography may also be conside-

red, to delineate the course of vessels at potential risk during 

implantation. Given the associated invasive nature and potential 

risks of angiography, CT angiography (CTA) may be preferable in 

this context.

Statement 3:

3. Patients being considered for OIs should undergo 

3.1. CT of the nose, paranasal sinuses and anterior cranial 

fossa to delineate bony anatomy.

• Delphi result: Agreed (score 7-9 = 97.4%, mean score 8.7)

3.2. High resolution magnetic resonance imaging (MRI) to 

cover the OBs, primary and secondary olfactory networks to 

delineate normal and abnormal anatomy and suitability for 

implantation.

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.7)

3.3. Angiography to delineate associated vascular structures 

at risk of injury during implantation.

• Delphi result: No consensus (score 7-9 = 55.3%, 1-3 = 

13.2%, mean score 6.6)

Treatment of OD prior to consideration of OI
Prior to consideration of OI, potential candidates should un-

dergo appropriate treatment according to current guidelines. 

At present, for all underlying causes of OD, with the exception 

of SND (for which separate, extensive treatment guidelines exist 
(76,77)), the strongest level of evidence exists for olfactory training 
(43,74). Accordingly, patients should have undergone a minimum 

period of documented olfactory training of at least 3 months (78). 

Given the invasive nature of OI, a longer duration of olfactory 

training might be preferable. Furthermore, where there is a 

possibility of an undiagnosed inflammatory condition, a trial of 

systemic and/or intranasal corticosteroids should be considered, 

again in line with current guidelines. For patients without signs 

of sinonasal inflammation, a trial of intranasal corticosteroids 

using high volume saline douches, drops with appropriate coun-
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selling regarding access to the olfactory cleft, or other novel 

application devices should be considered, as application using 

standard intranasal sprays are not effective in this group (79,80).

Whilst other therapies such as intranasal calcium buffers, intra-

nasal vitamin A, intranasal injection of platelet-rich plasma or 

omega-3 supplementation may be of benefit, at present there 

is insufficient evidence to support their required use prior to 

consideration for OI. In patients with anatomical abnormalities, 

e.g. following nasal trauma, surgical techniques such as septor-

hinoplasty to restore nasal airflow to the olfactory cleft should 

be considered.

Statement 4:

4. All patients should have tried and failed existing treatments in 

line with current guidelines.

4.1. In all patients except those with sinonasal disease (SND), 

this should include an extended period of olfactory training 

(≥3 months).

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.4)

4.2. In suspected SND/idiopathic OD, a trial of systemic/intra-

nasal corticoste roids (with appropriate choice of intranasal 

delivery system) ± nasal surgery should be considered.

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.1)

Pre-implantation counselling
Given the invasive and novel nature of OI, it is important that 

patients undergo a period of pre-implantation counselling, in 

which the surgical and research team discuss potential risks, 

possible financial burden and anticipated perceptual outcomes. 

It is important that patient and provider expectations should 

align at this point. A point of contact (e.g., clinical or research 

nurse) should be available pre- and post-operatively. Consent 

for research involvement and sharing of data in an accessible 

patient registry should be sought at this point. 

Statement 5:

5. All patients being considered for OI candidacy should under-

go a period of multidisciplinary pre-implantation counselling.

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.2)

Pre-operative assessment and possible contraindica-
tions 
All patients should undergo thorough pre-operative assess-

ment, during which potential surgical and anaesthetic risk 

factors should be identified. Though detailed discussion of 

contraindications requires knowledge of stimulation site and 

associated surgical approach, general, relative contraindications 

are discussed below.  

Age

Older individuals are more likely to have chronic systemic or 

neurological diseases that may impact on the safety of surgery 

and subsequent recovery. Further, cognition decreases with age, 

potentially complicating the ability to adapt post-implantation. 

However, performing the procedure in young individuals may 

also be challenging, especially as the bony and cartilaginous 

framework of the nose progressively matures until approxima-

tely 16 years of age (81). Therefore, minimally invasive approaches 

may be preferable in younger age groups. Furthermore, counsel-

ling and issues surrounding consent complicate – though do 

not preclude – implantation in children.

Sinonasal disease

It is unknown whether/how chronic sinonasal inflammation 

could affect short and long-term outcomes in olfactory implan-

tation – similar to the situation with chronic otitis media and 

cochlear implants. In addition to the underlying inflammatory 

processes in CRS, bacterial biofilms have been documented in 

these patients (82), which may (especially those with a history of 

previous nasal surgery) also harbour a unique mix of bacteria (83), 

resulting in persistent or more severe infection.  Post-operative 

infection could cause complications such as delayed wound 

healing, dehiscence, and extrusion, if an intranasal route of 

implantation were used. 

Nasal disorders

Recurrent bacterial infections and unusual pathogens should 

prompt an investigation for possible immunodeficiency (84).  

Furthermore, granulomatous diseases, such as sarcoidosis, 

eosinophilic granulomatosis with polyangiitis, and granuloma-

tosis with polyangiitis, are associated with purulent infections, 

diseased mucosa, septal destruction, and scarring (84), which may 

compromise sinonasal implant fixation and lead to increased 

risk of infection. Similarly, patients with cystic fibrosis or primary 

ciliary dyskinesia may have impaired mucociliary clearance 
(84), which may also impact postoperative healing. Benign and 

malignant sinonasal tumours should be evaluated on a case-by-

case basis.

Smoking

Smoking has been associated with poor olfactory function (85).  

Tobacco smoke causes impairment of mucociliary clearance and 

suppression of sinonasal innate immunity, both of which may 

have adverse effects on wound healing (84). Smoking cessation 

has been associated with improved mucus properties (86), and 

fewer histological abnormalities in nasal mucosa (87). Hence, 

smoking should be considered a contraindication to OI, particu-

larly where the OE is the intended stimulation target. In patients 

where the OB or higher order structures are the intended simu-

lation target, failure to quit smoking could also be considered a 



17

Supplement 35: Olfactory implants

Rhinology Vol 63, No 4, August 2025

relative contraindication, in a way analogous to refusing recom-

mended treatments that could improve their olfactory health.

Operative risks
As for contraindications, detailed discussion of potential 

complications is dependent on both the device used and the 

specific surgical procedure. However, thorough pre-operative 

assessment of the patient’s history (including comorbidities), 

physical exam findings, and diagnostics (including imaging) 

should be undertaken as part of a general approach to reduce 

risk. Furthermore, OI surgery should be performed by experi-

enced surgeons (rhinologist/anterior skull base surgeons and/

or neurosurgeons) who have been appropriately trained using 

cadaveric dissection or other simulation methods. Registration 

of complications in centralized safety databases should be 

encouraged, to allow for collective learning amongst the OI 

community. Future studies, prototypes, or simulations should 

provide new information related to patient safety and necessary 

precautions to reduce risks.

A brief list of some potential complications that may be incurred 

can be found in Table 3.

Statement 6:

6. Thorough pre-operative assessment should be undertaken in 

all patients in whom OI candidacy is considered. 

6.1. Absolute and relative contraindications can only be fully 

defined once device specifics are known, but are likely to 

include significant co-morbidity, blood dyscrasias and unfa-

vourable anatomy. More generally, individual patient factors 

should be considered when weighing potential benefits 

versus risks of implantation.

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.3)

6.2. To mitigate the risk of complications patients should un-

dergo thorough pre-operative assessment/investigation, and 

surgery should be undertaken by experienced surgeons.

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.8)

6.3. Future studies, prototypes, or simulations should inform 

future surgical planning to minimise risk of complications and 

optimise outcomes.  

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.5)

Post-implantation
After cochlear implantation, patients undergo a program of 

auditory rehabilitation. Accordingly, patients are supported 

during their period of adaptation to their new sensory input. A 

similar period of structured rehabilitation should be provided 

to patients who have undergone olfactory implantation. This 

should consist of device programming as well as possible olfac-

tory training (OT) (ideally with supporting multi-modal sensory 

input, e.g. visual ± auditory cues in addition to odours). Targeted 

exposure to key ‘safety’ odours (e.g., smoke) could be prioritized 

first, after which an increasingly diverse repertoire could be 

introduced, focusing initially on common or particularly ‘strong’ 

odorants (Figure 4).

Patients should receive multidisciplinary support post OI where 

needed, to include specialist research nurses and extended 

members such as nutritionists or psychologists where required. 

Regular reviews from the implanting surgical team should be 

undertaken, and psychophysical smell testing performed peri-

odically, to assess progress and possible background spontane-

ous recovery. 

Statement 7:

7. Patients should undergo a structured programme of olfactory 

rehabilitation post implantation 

7.1. This should include device programming with initial 

Minor Major

Bleeding
Localized nasal infection
Headache / pain
Frontal sinus stenosis
Nasal airway obstruction (e.g., scarring, synechiae)

Seizures
Bleeding (subarachnoid, intracranial haemorrhage, periorbital ecchymosis, retrobulbar 
hematoma)
Cerebrospinal fluid leak
Intracranial infections (e.g. abscess [subdural empyema, cerebral abscess] or inflammation 
[Encephalitis, Meningitis])
Pneumocephalus
Cerebrovascular disease
Brain tissue direct trauma (e.g. sequelae of frontal lobe parenchymal damage)
Electrode migration / extrusion / damage
Periorbital cellulitis
Subperiosteal abscess of the frontal bone (Pott puffy tumour)
Vision Impairment/Loss
Nasal septal necrosis
Qualitative olfactory dysfunction (Phantosmia / Parosmia)

Table 3. Potential major and minor complications.
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Figure 4. Overview of patient selection process and post implantation care. ‘?’ denotes patient groups in whom there is unclear utility of implantation 

at present.
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‘safety’ odours, followed by commonly encountered odours.

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.2)

7.2. Patients should receive multi-disciplinary support during 

this time.

• Delphi result: Agreed (score 7-9 = 97%, mean score 8.6)

7.3. Standardised outcome measure should be collected at 

regular post-implantation intervals, including psychophysi-

cal tests, patient-reported outcome measures, and tests for 

cognition/depression.

• Delphi result: Agreed (score 7-9 = 97%, mean score 8.8)

7.4. Complications monitoring including, where indicated, 

CT scans should be undertaken at regular post-implantation 

intervals where indicated.  

• Delphi result: Agreed (score 7-9 = 81.6%, mean score 7.9)

7.5. Standardised database reporting should be undertaken 

for safety, and ideally outcomes assessment including a 

position map of odours for possible optimization of electrode 

position.

• Delphi result: Agreed (score 7-9 = 97%, mean score 8.5)

Implants and stimulation: technology, techniques and 
potential pitfalls

In the following sections, the technological aspects of olfactory 

implantation and associated specific surgical considerations will 

be discussed, with a particular focus on stimulation target and 

technique. For detailed discussion of the ‘sensor module’ – we 

would refer readers to the available literature on artificial and 

bioelectronic noses (9,12,15).

Stimulation targets
Based on our knowledge of olfactory physiology, electrical 

stimulation can be targeted at various sites within the olfactory 

system, including the periphery - the olfactory epithelium - or 

central structures - including the OB and upstream regions such 

as the piriform cortex (PC). In the following section, stimulation 

will be discussed at these different levels (see also Table 4).

The olfactory epithelium
Stimulation at the level of the OE aims to replicate initial stimu-

lus conduction, thereby activating all physiological upstream 

structures. In theory this could produce ‘ecological’ perception. 

At birth, the OE is located as a continuous sheet within the 

olfactory cleft – an anatomical region bounded by the cribriform 

plate superiorly, the superior septum medially, and the middle 

and superior turbinates laterally (111). Whilst some degree of spa-

tial organisation or ‘rhinotopy’ has been shown in animals (112,113), 

its extent is not completely clear in humans. With advancing age 

and cumulative pathological insults, the overall extent of the 

OE decreases, and it may develop a patchy distribution due to 

interspersion of metaplastic respiratory or squamous epithelium 
(51,114) – though OE has been shown to be consistently present 

immediately below the cribriform plate, even at advanced age 
(115). In a recent cadaveric study of OE histology (mean age at 

death 74.1years), whilst there was inter-individual variation, 

Fitzek and colleagues demonstrated that the OE extended on 

average ‘1.0 cm below the cribriform plate, 0.7 cm posterior to the 

anterior attachment of the middle turbinate, 1.7 cm above the 

inferior edge of the middle turbinate, and 0.4 cm anterior to the 

sphenoid face’ (116). Together, interindividual variation in distri-

bution of OE, lack of clear rhinotopy and respiratory/squamous 

metaplasia complicate stimulation at this site. 

Perhaps in line with this, studies investigating olfactory percep-

tion following stimulation of the OE have demonstrated varying 

results. Early work from Uziel and colleagues demonstrated spe-

cific or ‘formed’ olfactory percepts such as ‘almond’ (n=5), ‘burnt’ 

(n=3), or ‘vanilla’ following electrical stimulation of the OE (92). 

In contrast, another early study failed to demonstrate olfactory 

perception following electrical stimulation, though when such 

stimulation followed odour exposure it reproduced the prior 

percept (93). In more recent work, generalised olfactory percep-

tion (e.g. ‘sweet, chemical, and fragrant’) was evoked through 

electrical stimulation at the middle turbinate in 8 out of 31 

participants (98). Aoyama and colleagues recently demonstrated 

irritating intranasal chemosensation using non-invasive electri-

cal stimulation at the nasal bridge and the dorsal surface of the 

neck – postulated to cause activation of the olfactory nerve. Ho-

wever, underlying mechanisms for these perceptions have yet 

to be fully elucidated, with either activation of the olfactory and 

trigeminal nerve or of the trigeminal nerve alone being possible 
(97). In several other studies, no olfactory perception could be 

elicited following stimulation of the OE (94,96). Instead, sensations 

like ‘tingling’ or ‘flashes of light’ have been described, depending 

partly on the applied voltage – with subliminal stimulation 

leading to more unpleasant perceptions. 
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Table 4. Overview of electrical stimulation on the olfactory system (Modified from Gunder et al. (3))

Source (year) Study population Target stimula-
tion area

Methods (Type of 
Stimulation)

Type of stimula-
tion device

Results

Electrical stimulation of the olfactory epithelium

Althaus (1881) 
(4)

1 patient with 
trigeminal dys-
function

Nasal cavity mu-
cous membrane 

eStim with a current of 
“thirty-five pairs of plates”

unspecified Perception of phosphorous smell

Aronsohn 
(1884, 1886) (5,6)

6 subjects Nasal cavity (un-
specified)

eStim at 2.5 mA menti-
oned (but unclear if same 
for all participants), nasal 
cavity filled with 0.73% 
Na Cl solution at 38 °C for 
stimulation

Platinum wire 
surrounded by 
rubber tube 

Odour perception like the smell 
that arises “when one very slowly 
and carefully lights a Swedish 
match”, current of 0.1 to 0.2 mA are 
sufficient to stimulate an olfactory 
sensation

Uziel (1973) (7) 21 healthy sub-
jects and 6 OD 
patients

Olfactory epithe-
lium

eStim using various 
electrodes (Ag, Ag-AgCl, 
NaCl) either cathodic or 
anodic, stimulus duration 
5s (rectangular current), 
can deliver a pulse with 
intensity varying from 0 to 
500 μA

Focal electrodes: 
Pure silver wire 
surrounded with 
polyvinyl sheath, 
Fine polyvinyl ca-
theter containing 
a silver rod coated 
with silver chloride 
in contact with 
a silver chloride 
solution

For anodal stimulation odour 
perception "almond" (n=5), "burnt" 
(n=3), vanilla (n=1) and "purulent" 
(n=1).

Straschill et al. 
(1983) (8)

10 healthy sub-
jects, 5 epilepsy 
patients

Olfactory epithe-
lium

eStim (60 Hz, duration 15 
s, same current was used 
which elicited taste sensa-
tions when applied to the 
tongue) and presentation 
of olfactory stimuli 

Silver ball elec-
trode 

No olfactory sensation followed 
eStim. Phosphenes were observed 
at higher stimulus intensities. 
Suppression of olfactory sensation 
when odorants were presented 
during stimulation. Olfactory 
perception was suppressed when 
odorants were presented concur-
rently with stimulation. In some 
cases, re-experiencing of odours 
occurred when eStim was applied 
shortly after odorant presentation. 
Unpleasant olfactory sensation 
followed eStim (n=3, with a history 
of temporal lobe epilepsy)

Ishimaru et al. 
(1997) (9)

5 healthy subjects Olfactory epithe-
lium

eStim via Ag electrode, 
electrical current of 2 mA 
for 0.5 ms, stimulation rate 
2 Hz

Bipolar silver sp-
here electrode

No generation of olfactory sensati-
ons but tactile sensations were no-
ted. Pain sensations were observed 
when stimulating electrode was 
outside of the olfactory cleft and 
touching the respiratory mucosa.

Ishimaru et al. 
(2002) (10)

14 subjects (inclu-
ding 12 patients 
with OD)

Olfactory epithe-
lium

Prior to testing, 0.1% 
epinephrine was applied to 
olfactory cleft, eStim 2 mA, 
0.5 ms duration

Bipolar electrode No olfactory sensation

Weiss et al. 
(2016) (11)

50 subjects (Expe-
riment 1); 
16 subjects (Expe-
riment 2) 

Olfactory epithe-
lium, superior and 
middle turbinates

eStim using a battery-
powered electronic 
stimulator: [Experiment 1: 
lasting for 0.5, 1, 2, and 3 s, 
with ISI of 30-50 s, starting 
at 50mV and incrementally 
increasing until sensation 
of any kind (currents 
ranging from 50-800 μA, 
Experiment 2: average cur-
rent 200 μA, with odours 
of “rose”, “chocolate”, and 
“manure”] 

Pure-silver stimu-
lating macro-
electrode

Minimal modulation of presented 
olfactory stimuli. 
No generation of olfactory sensati-
ons by eStim, sensations described 
as electrical current, pinpricks, or 
cooling inside the nostril.
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Source (year) Study population Target stimula-
tion area

Methods (Type of 
Stimulation)

Type of stimula-
tion device

Results

Karunanayaka 
et al. (2023) (13)

31 healthy sub-
jects

Olfactory epi-
thelium (middle 
turbinate)

eStim (rectangular-shaped 
weak electrical pulses in 
different frequencies [0–30 
kHz], and currents [1–5 
mA]), stimulus duration 
10s, inter-stimulus interval 
60 s

Arduino microcon-
troller, two silver 
electrodes 

For different stimulation para-
meters 22 olfactory sensations: 
chemical and fragrant smell 
sensations in 8 participants (1 mA, 
70 Hz), sweet smell sensation in 8 
participants and chemical smell 
sensations in 6 participants (1 mA, 
10 Hz)

Electrical stimulation of the OB and other brain areas in humans

Penfield, Jasper 
(1954) (14)

1 subject OB eStim parameters unspe-
cified

Unspecified Unpleasant odour sensation 
(seemed like “manure“)

Holbrook et al. 
(2019) (15)

5 CRS patients OB (intended site 
of stimulation, but 
actual placement 
over olfactory mu-
cosa, along the la-
teral lamella of the 
cribriform plate at 
the anterior, mid-
dle, and posterior 
ethmoid)

Trans-ethmoidal eStim 
of the OB. Square wave 
current of repetitive pulses 
at 1 to 3.17 Hz frequency, 
intensity from 1 to 20 mA, 
duration from 0.2 to 0.3 
ms, intensity increased by 
steps of 1 mA until smell 
perception or discomfort

Monopolar or 
bipolar electrodes

Odour perceptions (n=3): onion-
like, antiseptic, sour, fruity, bad. 
Only tactile perceptions for the 
rest

Andy (1967) (16) 1 epilepsy patient Amygdala and 
hippocampus 
(right-sided)

eStim parameters unspeci-
fied but stimulation of the 
amygdala: after-discharge 
lasted 21 s and spread to 
the adjoining hippocam-
pus; hippocampus: dischar-
ge lasted 16 s with minimal 
spread to the amygdala.

Intracranial bipolar 
electrodes

eStim of amygdala elicited olfac-
tory sensation (foul), but eStim 
of hippocampus did not result in 
olfactory sensation.

Nashold and 
Wilson (1970) 
(22)

5 with neurologi-
cal disease (par-
kinsonian tremor 
n=3, chorea n=1, 
intractable cranial 
pain n=1)

Thalamus (ventral 
lateral [for tremor 
and chorea], 
dorsolateral mes-
encephalon at the 
level of the collicu-
lus [for pain])

eStim via depth electrodes 
on the awake patients

Fine depth elec-
trodes

Electrostimulation of the thalamus: 
various olfactory impressions 
(rubber, smoky/burnt, chloroform, 
clove) in 3 patients.

Hummel et al. 
(2005) (25)

11 PD patients Sub-thalamic 
nucleus

Bilateral DBS with an 
impulse width of 60 μs, a 
stimulation frequency of 
130Hz, and an amplitude 
of 2.8–3.4V.

DBS electrodes Odour discrimination improved 
while DBS

Okun et al. 
(2007) (23)

5 patients with 
chronic and severe 
treatment- refrac-
tory OCD

NAc, anterior limb 
of the internal 
capsule

Patients received either 
actual testing or sham 
testing. 0 to 8 V, pulse 
width of 210 or 90 or 450 
μs, frequency 135 Hz. 

Monopolar DBS 
electrodes

Smells were associated with sti-
mulation in the most ventral lead 
positions in the NAc, described as 
metallic (n=6), odd (n=10), sweet 
(n=4), strange (n=4), roses/oil/
almonds (n=13). 

Fonoff et al. 
(2010) (26)

1 advanced PD 
patient

Sub-thalamic 
nucleus

Chronic monopolar stimu-
lation, 1.7 V right and 2 V 
left, pulse width 210 μs, 
frequency 130 Hz. 

DBS electrodes Improvement of odour identifica-
tion (Brief Smell Identification Test 
Score: 8, normal) after 5 months. 

Kumar et al 
(2012) (17)

16 children with 
focal epilepsy

Subdural space 
in the areas of 
the gyrus rectus, 
medial orbitofron-
tal gyrus

Biphasic pulses, frequency 
50Hz, pulse duration 300 
μs, train duration ranged 
up to 5 s, Current intensity 
from 3 to 9 mA.  

A pair of subdural 
electrodes

Stimulation near OB or olfactory 
tract: olfactory sensations (n=11). 
Among these, 9 reported un-
pleasant smells (bitterness, smoke, 
garbage) and 2 reported pleasant 
smells (strawberry, good food). 
These sensations were elicited 
after stimulation near the OB, the 
olfactory tract.

Table 4 continued. Overview of electrical stimulation on the olfactory system (Modified from Gunder et al. (3))
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Interestingly, activation of the central olfactory system following 

stimulation of OE has also been observed. Using fMRI, Weiss and 

colleagues demonstrated alteration in activity of deep brain 

structures (e.g., the PC), after sub-threshold intranasal electri-

cal stimulation immediately prior to the scanning session. The 

authors concluded that electrical stimulation of the OE caused 

altered central olfactory processing without olfactory percepti-

on (96). Another study using EEG revealed evoked potentials from 

the ipsilateral frontal region following OE stimulation (94). 

Since almost all fragrances simulate both the olfactory and trige-

minal systems (117), trigeminal stimulation may potentially aug-

ment olfactory sensation. Badran et al., demonstrated increased 

sensitivity to guaiacol following trigeminal nerve stimulation or 

transcranial direct current stimulation (118). Further, trigeminal 

stimulation may aid in the recipient patient’s ability to locate the 

Source (year) Study population Target stimula-
tion area

Methods (Type of 
Stimulation)

Type of stimula-
tion device

Results

Mazzola et al. 
(2017) (18)

221 drug-refrac-
tory epilepsy 
patients

Insula Bipolar square pulses of 
current, frequency 50 Hz, 
pulse duration 0.5 ms, train 
duration of 5 s, intensity 
between 0.2 and 3.5 mA. 

Stereotactic depth 
electrodes (only 
contacts in the 
grey matter)

Olfactory sensations from stimuli 
at mediodorsal insula in 15 out 
of 550 stimulations, especially in 
the mid-dorsal part of the insula 
(posterior short gyrus). 

Fox et al. (2018) 
(19)

22 intractable 
focal epilepsy 
patients

OFC Bipolar eStim, alternative 
wave square current with 
50 Hz, 2-8 mA and pulse 
width of 200-300 ms. Sham 
stimulation included for 
some patients. Open-
ended questions with 
follow-up questions.  

Subdural grid / 
strip electrode 
arrays (n=9), depth 
electrodes (n=12), 
or a mix of both 
(n=1)

Olfactory (n=13), gustatory (n=3), 
somatosensory (n=8) and affective 
(n=2) changes occurred. Olfactory 
phenomena were largely neutral 
or unpleasant. Left lateralization 
of stimulations elicited more 
negative events while right sided 
stimulation elicited more neutral 
effects. Most of the effects after 
stimulation around the transverse 
orbital sulcus, none in the anterior 
part of the OFC. 

Bérard et al. 
(2021) (20)

8 temporal lobe 
epilepsy patients

OFC, anterior hip-
pocampus

Biphasic pulses, frequency 
50 Hz, 0.2 ms duration, 
monopolar, maximal sti-
mulation 4mA. 

Stereotactic 
depth electrodes 
(stimulation only 
on the most distal 
contact)

Stimulation at medial OFC: 
pleasant olfactory perception 
(n=5), such as coffee or lemon. 
Specific locations: olfactory sulcus, 
medial orbital sulcus, or medial 
orbitofrontal gyrus. Increasing 
stimulation amplitude changed 
the percept identification in 3 of 
the 5 patients. 

Li et al. (2023) 
(21)

302 medically 
refractory epilepsy 
patients

Insula, amygdala, 
OFC, middle/su-
perior temporal 
cortex, pars orbita-
lis/superior frontal 
cortex, postcentral 
gyrus, rostral ACC 

Biphasic eStim with pulse 
width of 0.3 ms and 5 s 
duration, frequency 50 Hz. 
Intensity ranged from 0.1 
to 6 mA. 

SEEG bipolar 
electrode

Chemosensory perception (olfac-
tion, gustation and chemesthesis) 
elicited in 21 patients. Highest 
response rate (1.8%) in the insula, 
especially along the central sulcus 
axis. Mostly unpleasant sensati-
ons and predominantly olfactory 
percepts. 

Zhang et al. 
(2023) (24)

48 drug resistant 
epilepsy patients

Amygdala eStim using high-fre-
quency stimulation (50Hz, 
pulse duration 300 μs, train 
duration of 5 s), bipolar 
mode of stimulation to 
adjacent contacts. Stimulus 
intensities ranged from 0.5 
to 8mA

Multi-lead SEEG 
electrodes 

250 responses evoked,  12 olfac-
tory responses in 4 patients, inclu-
ding peculiar/obnoxious odours, 
sour smells, and smells associated 
with visual hallucinations

Table 4 continued. Overview of electrical stimulation on the olfactory system (Modified from Gunder et al. (3))

μs microseconds, ACC anterior cingulate cortex, Ag silver, Ag-AgCl-NaCl silver-silver-chloride-sodium-chloride, CI cochlear implant, NaCl sodium chlo-

ride ,CRS chronic rhinosinusitis, EEG electroencephalography, ENT ear nose throat, eStim electrical stimulation, fMRI functional magnetic resonance 

imaging, Hz hertz, kHz kilohertz, mA milliampere, n number, NAc nucleus accumbens, OB olfactory bulb, OCD obsessive-compulsive disorder, OFC 

orbitofrontal cortex, PD Parkison’s disease, s seconds, SEEG stereoelectroencephalography, STN subthalamic nucleus, DBS deep brain stimulation, V 

volts.
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source of an odour (119). 

Surgical approach to placement
Placement of electrodes for stimulation of the OE should theo-

retically be possible using an endoscopic endonasal approach, 

potentially under either general or local anaesthesia. Therefore, 

of the different target stimulation sites, the OE is the simplest, 

and likely safest. Long-term complications from intranasal 

electrodes, however, should be considered. The nose and the 

sinuses are not sterile, and infection and crusting around the 

implanted electrode (similar to an intranasal foreign body) is 

possible. Submucosal placement of electrodes could mitigate 

some of these issues, and deserve further research. Whilst heal-

thy nasal mucosa is an effective barrier that limits inflammation, 

this is not the case in patients with chronic rhinosinusitis (CRS) 

– in whom barrier dysfunction leads to chronic inflammation, 

histological remodelling and clinical symptoms (76). Such patients 

are therefore at increased risk of complications and intranasal 

implantation may therefore be inappropriate in this group. 

The use of externally placed (transcutaneous) electrodes may 

allow non-invasive simulation of the OE ± OB (97,120). However, 

more work is needed to demonstrate the utility of this approach 

in vivo. 

The olfactory bulb
The olfactory bulbs are paired neuronal structures found imme-

diately ventral to the frontal lobes, and dorsal to the cribriform 

plate. They are cortical-like with a lamellar architecture, contai-

ning various cell types, including mitral and tufted cells (second 

order neurons), interneurons and glia. OSN axons synapse 

within the OB within specific structures called glomeruli. Each 

glomerulus receives axons from OSN with the same OR type (i.e. 

monoallelic), resulting in some degree of spatial organization 
(111,121). Furthermore, previous work has demonstrated significant 

variation in glomerular size, shape and location within the hu-

man OB (122). This ‘spatial fingerprint’ is additionally augmented 

by the effects of differential odorant absorption characteristics, 

their potential subsequent interactions with the nasal mucus 

and nasal aerodynamics, together creating a complex spatio-

temporal neural fingerprint (25). Despite this, in theory, selective 

stimulation of the OB could mimic different odour activation 

patterns. Finally, when considering stimulation at this site, it is 

important to note that the shape and size of the OB is relatively 

plastic, reflecting olfactory function (with a range of volumes 

in one study from 37-98mm3 and 41-97mm3 for left and right 

sides respectively) (123,124). For example, the OB atrophies with age 
(116), and has been shown to increase in volume with improved 

olfaction following treatment (71). This highlights the potential 

interindividual differences that may affect stimulation of the OB, 

as well as the importance of thorough pre-operative imaging for 

any potential OI recipients.

Due to the invasive nature of direct OB stimulation, the majority 

of studies to date have been performed in animals (125–128). In one 

such study, using a CI electrode, a localized field potential res-

ponse was generated by direct stimulation of different areas of 

the rodent OB (125). In humans, an early study from Penfield and 

Jasper described unpleasant olfactory sensations (e.g.: burning 

rubber, stench or manure) following invasive intraoperative 

electrical stimulation of the OB in patients with epilepsy (16). In a 

later human study, using a transcribriform stimulation appro-

ach in patients who had undergone previous ethmoidectomy, 

Holbrook and colleagues demonstrated olfactory sensations 

in 3 of their 5 subjects (99). The elicited olfactory perception was 

reproducible after applying lidocaine intranasally to induce a 

temporary anosmia. The authors therefore concluded that the 

perception demonstrated was due to stimulation of the OB, 

rather than the OE. 

Surgical approach to placement
Stimulation of the OB could be achieved through external, 

intranasal or intracranial stimulation (129,130). Although further in-

vestigation is likely to yield a greater variety of approaches and 

options, optimal intranasal and intracranial implantation positi-

ons, and their associated surgical approaches were investigated 

by Menzel and colleagues in a recent cadaveric study (129). For 

the intranasal approach a U-shaped mucosal flap was elevated 

from the axilla of the middle turbinate, and an electrode was 

placed immediately ventral to the cribriform plate, following 

which the mucosal flap was repositioned. Advantages of this 

approach include ease of surgical placement, and relative safety 

regarding CSF leakage or ascending infections. However, the 

distance of the intranasal electrode to the OB is relatively large 

due to intervening skull base, which could result in reduced 

spatial specificity due to higher required stimulation. Regarding 

intracranial placement, the following approaches were investi-

gated: through a widened ostium of fila olfactoria (endoscopic), 

after performing a Draf IIb procedure (endoscopic), through a 

wider transcribriform approach (endoscopic) and a combined 

approach with an endoscopic and frontal osteoplastic flap. 

The first of these approaches seemed particularly promising 

– allowing close positioning of the electrode to the OB and an 

acceptable level of surgical invasiveness. The Draf IIb procedure 

provided a good overview of the surgical area, however, may 

result in frontal sinus ostium obstruction after placement of 

the implant. In another study, Benkhatar and colleagues sug-

gested a midline OI with stimulating electrodes placed either 

extracranially, immediately ventral to the cribriform plate, or 

extradurally, medially between the two OB – facilitated by 

transseptal transcribriform removal of the posterior two-thirds 

of the crista galli (130). The ‘receiver-stimulator’ was placed behind 
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the hairline, with connection between the two facilitated by 

nasal bone minitrephination. Compared to the intracranial ap-

proaches described by Menzel and colleagues, the extradural 

approach of Benkhatar et al., may be more invasive, however 

there is no quantitative comparison at present. Both transcranial 

and transcribriform approaches are theoretically associated with 

complications, including but not limited to: cerebrospinal fluid 

leak, local or ascending infections (e.g., meningitis, subdural 

empyema, cerebral abscess, cavernous or superior sagittal sinus 

thrombosis, (haemorrhage and direct brain tissue injury). These 

risks tend to increase with the complexity of surgery and are 

contingent upon both the invasiveness of the procedure and 

individual anatomical considerations. Furthermore, Benkhatar 

and colleagues demonstrated high rates of simulated CSF leak 

associated with transcribriform techniques (130). Inadvertent 

skull base injury requires primary closure using appropriate 

reconstructive techniques. Potential risks should be mitigated 

by thorough analysis of preoperative imaging (129), and use of in-

traoperative image-guided navigation systems where available. 

Together, the placement of an intracranial intradural stimulating 

device on the OB may appear technically easier (larger working 

space and room for anchoring) and safer (notably regarding CSF 

leak and infection) through a transcranial route than through 

an endonasal one. Preliminary work by Coelho et al., suggests a 

supraorbital keyhole craniotomy, performed through a cosme-

tically appealing brow incision, is feasible in as much as 95% of 

potential candidates.  This approach, familiar to neurosurgeons, 

can afford direct line-of-sight to the OB without violation of 

the sinus mucosa or orbit.   While such an approach may serve 

to mitigate the risks of CSF and meningitis compared with a 

trans-nasal approach, it may involve some additional degree of 

risk from frontal lobe retraction and vascular injury, even with 

angled endoscopic instrumentation (131). In general, approaches 

which preserve the peripheral olfactory anatomy should also 

be given special consideration, in order to allow underlying 

spontaneous recovery, and to facilitate return to baseline where 

potential explant was considered. 

Central olfactory networks
Structures of the central olfactory networks can be divided 

into primary (those that receive direct neuronal input from the 

OB) and secondary (those that do not receive direct input). The 

primary network includes the PC, anterior olfactory nucleus, 

amygdala, entorhinal cortex and anterior perforated substance. 

The secondary network includes the orbitofrontal cortex (OFC), 

insula, hippocampus, and thalamus as well as other structures. 

Anatomically, these regions range in size and relative accessibi-

lity – with the OFC being comparatively large and easily acces-

sible and the PC comprising a thin volume of cortex connecting 

the frontal and temporal lobes. Furthermore, these structures 

are multimodal and therefore do not uniquely subserve olfac-

tion. This must be kept in mind when considering non-olfactory 

side effects from their stimulation.

With regards to the central olfactory networks, the majority 

of the existing literature has been produced during epilepsy 

research. Mazzola and colleagues performed stimulation of the 

insula using stereotactically placed depth electrodes in patients 

undergoing presurgical evaluation for medically refractive 

epilepsy (stereo-EEG): 221 patients underwent a total of 651 sti-

mulations, of which only 6 elicited an olfactory percept (106). Also 

in patients undergoing stereo-EEG, Li and colleagues demon-

strated chemosensory (olfactory, gustatory or chemesthetic) 

responses in 21 of 301 patients, and 53 of 21,661 stimulation si-

tes, with the highest response rate being found in the insula (109). 

In the OFC, Bérard et al., and Fox et al., demonstrated olfactory 

perception using stereo-EEG (SEEG) and electrocorticography 

(ECoG), respectively (107,108). Kumar and colleagues also reported 

olfactory sensations in 11 out of 16 children with focal epilepsy 

using electrocorticography (ECoG) at the ventral frontal lobe. 

The elicited percepts were mostly unpleasant (9 out of 11 pa-

tients), and were most successful when located proximal to the 

OB or tract (irrespective of hemisphere side) (105). With regards to 

other regions, deep brain stimulation (DBS) in the ventral part 

of the nucleus accumbens (NAc) has been shown to elicit some 

chemosensory percepts (103) (for details of DBS see Appendix 1). 

Finally, Zhang and colleagues demonstrated olfactory sensati-

ons in 4 out of 48 patients who underwent electrical stimulation 

of the amygdala (110). In summary, it appears that stimulation 

across different central sites could potentially produce olfac-

tory percepts, although to different degrees and with varying 

reliability (132).

Surgical approach to implantation
To stimulate intracranial structures, the following can be consi-

dered: non-invasive procedures such as magnetic or direct cur-

rent fields (133,134), minimally invasive procedures targeting cranial 

nerves as an entry into the brain (135) or invasive procedures with 

an transcranial approach through craniotomy and stereotactic 

electrode placement within the region of interest. 

Long-term electrode implantation for the purposes of moni-

toring or stimulating neuronal activity, is relatively well-esta-

blished in therapeutic contexts (e.g., DBS and brain-computer 

interfaces, auditory brainstem implants). Nevertheless, electrical 

implantation of the central olfactory networks, upstream of the 

OBs, is accompanied by multiple challenges, both generic and 

specific. 

 

Generic challenges include direct/indirect brain injury, CSF 

leak, local and intracranial infections (136–138). Specific challenges 

in central olfactory implantation include the size, shape and 
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location of olfactory eloquent structures. For example, whilst 

the PC – being the first recipient of input from the OB – would 

offer a theoretically attractive target, it is comparatively small, 

has a curved shape, and has both frontal and temporal divisions, 

making it challenging to achieve precise implantation (139–142). 

Because of its curved shape, its thickness is reduced to only 1–2 

mm (141). Inadvertent propagation of applied electrical current 

beyond the target structure could occur, with unwanted side ef-

fects of non-target stimulation. This poses a theoretical issue for 

any small target structure. Also, the proximity of arteries in these 

regions poses a risk of haemorrhage during implantation, and 

the angle of implantation therefore has to be chosen carefully 
(143).

Despite these issues, implantation could be considered for the 

OFC, insula, PC, amygdala, nucleus accumbens and medial tem-

poral lobe. For more specific information, see Appendix 1.

Statement 8:

8. Efficacy of stimulated olfactory perception and impact of OD 

pathophysiology should be taken into account when conside-

ring potential stimulation sites:

8.1. Olfactory epithelium: only limited work has shown suc-

cessful olfactory perception following electrical stimulation. 

Inter-individual variation in distribution, and potential histo-

logical damage associated with OD, complicates stimulation 

at this site.

• Delphi result: Agreed (score 7-9 = 84.2%, mean score 7.7)

8.2. OB: work in animals and humans has demonstrated acti-

vation of the olfactory system following electrical stimulation. 

Glomerular ‘mapping’ in humans, and its degree of stereotypy, 

is at present unknown. Variations in size and shape associated 

with OD should be kept in mind when considering stimula-

tion in this site.

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.3)

8.3. Central olfactory networks: some work has demonstra-

ted olfactory perception following stimulation of upstream 

structures, though with low response rates. Central stimula-

tion may be favourable in patients with significant damage to 

the OB. The multi-modal nature of central structures should 

be kept in mind when considering the efficacy of stimulated 

olfactory perception and potential side-effects.

• Delphi result: Agreed (score 7-9 = 97%, mean score 8.3)

 

Which electrodes? 
Generic considerations about chronic implants

A. Stimulation vs recording for chronic use

A chronic implant is an implantable hardware allowing to ‘write 

in’ (stimulation) or ‘read out’ (recording) electrophysiological 

information directly from the brain. Long term implantation 

requires the electrodes to survive for an extended period of time 

in a harsh environment where the technology must be resilient 

to delamination, swelling, corrosion, dissolution, fouling, etc. (144). 

Corrosion may be prevented by modern approaches (145). It is no-

teworthy that novel encapsulation materials and technologies 

are being developed to ensure long-term in-vivo performance 
(146).  

B. Inflammation

Tissues react to the presence of a foreign body with an inflam-

matory response, also called foreign body reaction, resulting 

in the formation of encapsulating tissue (comprised of a dense 

layer of glial cells of up to several hundred µm thick). This layer 

electrically insulates electrodes from the target neurons (147). Les-

sons may potentially be learnt from peripheral nerve stimulation 

(e.g. hypoglossal nerve stimulation), in which close circumfe-

rential contact between stimulating electrodes and nerves and 

dynamic activation pattern, mitigate the effects of formation of 

encapsulating tissue and electrode corrosion, respectively.

C. Materials

All materials must be suitable for chronic implantation (146, 

148-152). It has been shown that an implant’s stiffness impacts on 

the inflammatory response, i.e., materials that are significantly 

stiffer than the brain tissue will create a larger inflammatory 

response. It is believed that the mechanical mismatch induces 

micro-movement of the implant with respect to the brain which 

maintains the inflammatory state long-term (152–154). Minimizing 

the final implant footprint and especially its cross-section is 

crucial to decrease the foreign body reaction (155,156).  Altogether, 

soft (154) and flexible (157) designs/constructs are highly desirable 

when fabricating microelectrode arrays. These materials not 

only reduce the inflammatory response, but also conform better 

to the tissue topography. This close contact creates a highly 

efficient interface, enabling both high-fidelity recording with 

improved signal-to-noise ratio and enhanced stimulation for a 

given potential when stimulating. 

D. Resolution

Small electrodes are desirable when small volumes of tissue are 

targeted for stimulation. Asplund and co-workers estimated that 

1 mm3 of cortex houses a staggering 50,000 neurons (156). This 

density far outstrips the capabilities of current technology, as 

evidenced by commercially available probes that offer only 16 

electrode sites in a similar area. A multitude of small electrodes 

are achievable with microfabrication technologies; however, the 

limited electrode surface area available to interact with the bio-

logical environment induces a large electrochemical impedance. 

Large impedances not only limit the transduction of voltage to 

current when stimulating but also lowers the recording quality 
(158). Finally, a high resolution is achieved fabricating an array of 
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microelectrodes, yet incorporating a multitude of microelec-

trodes onto a small implant presents a wiring challenge. While 

multiplexing (159) and multi-layered fabrication techniques (156) 

offer potential solutions, these methods increase both the cost 

and complexity of the fabrication process.

The ideal device to stimulate the OB
Taking the OB as hypothetical stimulation target, and conside-

ring the points discussed above, the ideal device would feature 

a dense array of electrodes capable of addressing single glome-

ruli, whose diameters range from 30 to 200 μm in mammals (160). 

For minimum invasiveness, an OI device would be flexible and 

wrap partly around the OB to address its external surface, similar 

to cuff electrodes. It would be inserted (either via a transcribri-

form approach or craniotomy), deployed and self-positioned 

around the OB once inserted. Arrays of electrodes with diame-

ters and inter-electrode distance down to 5 μm diameter are 

easily achievable with standard microfabrication tools, but the 

challenges reside in other points. First, although it may be of 

little practical concern, electrodes may corrode and dissolve 

when used for electrical stimulation: these electrodes would, 

thus, need to be thick enough to survive chronic stimulation. 

Second, a strategy that could be used to increase their lifetime 

is to reduce microelectrode impedance, for instance, increasing 

their effective surface area by roughening the material used. 

Third, addressing single glomeruli over the whole surface of the 

OB would result in a large number of electrodes. The routing 

and wiring would thus represent a technical challenge, adding 

to the data collection and processing power necessary to treat a 

large number of signals.

Brain stimulation devices
Devices for brain stimulation are widely available on the market, 

though at different stages of regulatory approval. The main ty-

pes used today include intracortical microelectrodes, and depth 

electrodes (152). Intracortical microelectrodes are small shafts that 

are implanted in the cortex and target shallow layers of cells. 

Depth electrodes are placed along the length of centimetre-

long shafts that reach deeper structures of the brain (161). EcOG 

– though used primarily for recording rather than stimulation 

(which at present can only be used for short term purposes, for 

example during exploratory epilepsy surgery), uses electrodes 

placed on a flat substrate between the dura mater or between 

the dura mater and the brain – and may have greater applica-

tion in the future. 

A more detailed discussion on brain stimulation devices, inclu-

ding: intracortical microelectrodes, depth electrodes, and EcOG 

may be found under Appendix 2.

Stimulation type – neural oscillations 
Brain activity manifests electrical oscillations, which are repe-

titive rhythms of neuronal firing. In humans, neuronal activa-

tions are usually recorded as Local Field Potentials (LFP) (162,163). 

The timing and sequence of oscillations found in the different 

structures of the olfactory system seem to play an important 

role for olfactory sensations. There is a synchronization of 

breathing rhythms between the PC, the amygdala and the hip-

pocampus especially during the inspiration phase (164-166) - three 

structures known to be responsive to odorous stimulation. Thus 

the connectivity between structures of the primary olfactory 

cortex aligns with the breathing frequency, and probably as a 

consequence, this modifies the primary olfactory cortex’s ability 

to sample odours. In addition, theta, beta and gamma oscillati-

ons are found in the primary olfactory cortex during olfactory 

processing in a specific sequence (165).  

Altogether, the results of these studies suggest that the PC, the 

amygdala, or the hippocampus could be interesting targets 

for electrical stimulation with an OI. Other regions, including 

the OFC, insula and the NAc may also be of interest. However, 

as described above, the various studies show inconsistencies 

in perceptual outcome, with a low response rate. This may be 

due to technical challenges such as the area covered by the 

stimulation itself. But it may also come from the fact that the 

stimulations described are not delivered as a form of embedded 

frequencies. 

Further research is required to determine whether one stimula-

tion site is sufficient. Although it has been shown that there is 

a specific chain of events (167), from the PC to the OFC, passing 

through the limbic system among others, olfactory processing 

is in fact organized in different networks (sensory, memory, and 

cognitive) (168,169). To increase this complexity, some feedback 

information follows a top-down pathway, for example from the 

amygdala to the PC or the OB to the OE (170). These issues require 

attention when planning successful electrical stimulation and 

choosing suitable stimulating sites, and it might be that two or 

more brain structures require simultaneous stimulation, or with 

a slight delay, for successful and/or efficient olfactory percep-

tion. 

In summary, electrical stimulation may be most successful when 

pulses are applied with a specific onset (aligned with inhalation), 

precise timing (to be studied) and with a specific sequence of 

events (theta followed by beta and gamma). 

Statement 9:

9. Regarding OI electrodes and stimulation paradigm:

9.1. Where the OB is target, ideally, the device should be able 

to connect a high-density microelectrode array of electrodes 
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to address single glomeruli, should be flexible and small, 

for transcranial or transcribriform approaches, and is easily 

deployed and secured around the OB. 

• Delphi result: Agreed (score 7-9 = 89.5%, mean score 8.1)

9.2. Where higher order olfactory structures are the target, 

currently available stimulation systems include depth elec-

trodes (deep brain stimulation [DBS]), microelectrodes, and 

electrocorticography (ECoG) devices, which require different 

surgical approaches.

• Delphi result: Agreed (score 7-9 = 92.1%, mean score 8.3)

9.3. Ongoing research should address: the prolongation of 

microelectrode lifespan (through the lowering of electrode 

impedance and the use of novel material for electrodes and 

encapsulation); the reduction of foreign body reaction (mat-

ching the mechanical stiffness of conformal implants to the 

surrounding tissues and minimizing the electrode footprint); 

determining best method of implantation (single glomeruli, 

whole OB surface). 

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.6)

9.3.1. Active surveillance for complications secondary to 

persistent neurochemical, histological, and behavioural 

modifications resulting from electrode implantation should 

be undertaken.

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.7)

9.4. Stimulation timing, sequence of oscillations and potential 

multiplicity of target site require further study, e.g., respirati-

on-triggered sequences of oscillations aligned with specific 

time-locked electrical stimulation may best evoke reproduci-

ble olfactory precepts.

• Delphi result: Agreed (score 7-9 = 84.2%, mean score 8.0)

Where to place an energy source
Regarding the energy source, different implants located in the 

ENT area share common features (Table 5). A wired/wireless con-

nection between the energy source and the stimulating elec-

trode must exist. For the CI, for example, the energy source is 

the external part of the device and is located behind the auricle. 

For hypoglossal neurostimulation, the energy source is inside a 

pulse generator located in the anterior chest wall. 

The question of location remains open: whether the energy 

source must be internal (e.g. in the olfactory cleft) or external 

(e.g. in the temporal area). If the energy source is internally loca-

ted, it must be biocompatible. If the energy source is externally 

Table 5. Comparison of stimulation devices in the head and neck.

CI Hypoglossal neurostimulation OI

Indication Severe to profound hearing loss Obstructive sleep apnoea Olfactory impairment

Patient contraindication Auditory neuropathy, intracranial 
lesions, cognitive impairment, cer-
tain middle and inner ear disease

Central apnoea See discussion in text

Nerve Auditory nerve (CN VIII, sensory) Hypoglossal nerve (CN XII, motor) Olfactory nerve (CN I, sensory) 
and/or trigeminal nerve (CN V, 
sensory)

Sensor Microphone – speech processor - 
transmitter

Detection of apnoeic episodes 
from a sensor located on the chest 
wall

Chemical sensor intra- (?) extra- (?) 
nasal

Energy External part of the device Implantable pulse generator Intra- (?) extra- (?) nasal/cranial 
device

Stimulation Continuous Continuous or non-continuous Continuous

Electrodes Multi-contact
Semi-rigid

Multi-contact
Semi-rigid

Multi-contact
Semi-rigid

Location of the electrodes Cochlea Wrapped around the hypoglossal 
nerve

Probably intracranial,
extradural, close to the OB (?)
Intranasal (?)

Efficiency High due to tonotopy in the coch-
lea and the auditory cortex

Controlled by selective stimulation 
between fibres innervating dif-
ferent muscles (opening or closure 
the upper airway)

Unknown
but probably activating OB 
OFC
Transformation of olfactory signal 
to trigeminal perception

Selection of the patients Multidisciplinary
Audiological testing
MRI

Multidisciplinary
Sleep lab

Multidisciplinary
Olfactory ± trigeminal tests
MRI

CI cochlear implant, CN cranial nerve, MRI magnetic resonance imaging, OB olfactory bulb, OFC orbitofrontal cortex, OI olfactory implant
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located, the cable connected to the stimulating electrode needs 

to be placed under the skin, which is a challenge in the area 

of the face around the nose. In the transseptal transcribriform 

approach recently described by Benkhatar and colleagues, 

the receiver was placed under the scalp, behind the hairline 

(see section on Surgical approaches for implantation for more 

details). If possible for the energy source, this could provide a 

cosmetically acceptable solution for many patients (130). As long 

as the array lead wire is thin enough it can be tunnelled (i.e. in 

the subperiosteal plane) to anywhere more posteriorly in the 

hair-bearing scalp where the receiver/stimulator would lie.  The 

dimensions of the energy source are also of primary importance 

because, if internally placed, it must fit the olfactory cleft or a 

volume created by surgery e.g. in the maxillary sinus. There is 

always a trade-off between volume reduction and energy capa-

city. Due to recent advances, one can consider that in rechar-

geable devices, the volume of the battery is less than 2 cm³ per 

stimulating electrodes (171).

Another problem to be considered for internally located power 

sources is how the battery is replaced after several years. 

This should be done, ideally, under local anaesthesia without 

removing the implanted device. In battery-powered devices, 

energy consumption is essential as it impacts the time between 

recharge and device longevity. 

Another option for the energy source is to use a battery where 

the energy is transmitted by radiofrequency. Such devices exist 

for the hypoglossal neurostimulation where a flat battery is 

placed subdermally in the submandibular area near the hypo-

glossal nerve endings. One can hypothesize that such devices 

could be efficient for the electrode near the olfactory epithelium 

or near the OB if embedded under the skin of the forehead. 

Wireless charging battery systems also exist and could be used 

while the user is asleep.

The hypothetical OI, though a much-anticipated step in the 

therapeutic field, carries with it several ethical issues.

There are four pillars of medical ethics: beneficence, non-

maleficence, autonomy, and justice. It is generally accepted 

that any medical intervention must respect these 4 pillars (172). 

The most obvious question for the OI concerns the principles of 

beneficence and non-maleficence. Indeed, although the idea of 

developing an implant to improve or restore olfactory function 

is laudable, there are many uncertainties concerning its efficacy 

and its tolerability. In other words, can we guarantee that such 

an implant will benefit the patient without harming him or her? 

A probable target for implantation is the OB. This requires 

intracranial access and is therefore relatively invasive. Moreover, 

as mentioned above, after the perioperative period, various 

adverse effects or complications may arise. Such an implant 

can therefore only be considered as ethically acceptable if the 

benefits outweigh the risks. 

There is no doubt that restoring normal or subnormal olfactory 

function would justify the risks involved. But what if the implant 

could only detect a few smells? If only a few scents could be de-

tected, those that would be preferred would certainly be those 

to improve hazard detection, and to enhance the pleasures 

associated with odour detection, particularly for food. Detecting 

odours associated with various environmental hazards could 

be considered a survival system. However, there are currently 

detectors for gas, smoke and spoiled food. Indeed, a wearable, 

‘sniffing smartwatch’ that can detect environmental odours has 

already been demonstrated (11). So, the main advantage of taking 

a surgical risk, in this scenario, would be to provide constant 

hazard detection. 

It is an ethical imperative to fully discuss patient and provider 

expectations, prior to consideration of candidacy. Allowing 

patients to experience everyday smells (e.g., food, body odours) 

could certainly improve their quality of life. However, it is unli-

kely that the device would, at least initially, represent the multi-

tude of smells that surround us. So, one question that should be 

discussed is whether patients would consider their quality of life 

satisfactory if they only smelled a restricted spectrum of odours. 

Referring to existing sensory implants, it is hoped to develop an 

OI that performs as well as CI. CI faithfully reproduces hearing 

and can be considered as a reference in the field of sensory 

implants. However, other implant types, like retinal implants, 

have produced much more controversial results. These implants 

provide low resolution pixelated pictures, which may seem 

insufficient for a normal-sighted person. However, it has been 

reported that some blind people considered even rudimentary 

perception as a significant improvement in their everyday life 
(173). This suggests that, depending on context, even a slight 

restoration of a sense can be perceived as positive by patients.  

Likewise, the earliest days of cochlear implantation were marked 

by poor speech understanding that by today’s hearing profes-

sionals would be considered poor.  Nonetheless, deaf patients 

themselves felt the results to be nothing short of miraculous.  

Ethics of olfactory implantation 
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It is also important to consider the possibility that expectations 

may not be met, or that a complication may arise. Notably, stu-

dies on electrical stimulation of olfactory structures have shown 

that electrical stimulation can induce various types of odours, in-

cluding parosmias. Given that parosmias are typically perceived 

as negative and have a strong impact on quality of life, having 

an implant that induces parosmias could even worsen patients’ 

condition. The possibility that it may not work or that there 

may be a complication also may necessitate explantation (174). 

But in this scenario, if explantation is undertaken, it is uncertain 

whether the patient will at least return to his or her pre-implant 

function. Indeed, working on olfactory structures also runs the 

risk of altering residual olfaction. As such, and as was true with 

cochlear implantation, initial candidates must be those with 

complete anosmia with the least to “lose”.  In addition, depen-

ding on the device design, a wirelessly accessible OI may be 

prone to cybersecurity issues.  Wireless access may be important 

for programming and monitoring that can be done remotely. 

However, it can also run the risk of the device being disabled or 

hacked (175), and the risk of serious harm may increase for intra-

cranially implanted devices. These important issues will have 

to be investigated and openly discussed with patients who are 

candidates for implantation. 

Finally, the financial implications and associated healthcare 

equity of olfactory implantation must be considered. Whilst OI 

remain in the experimental stage, funding for such work will 

be provided by research grants, and access limited to select pa-

tients. However, looking forward to the position where OI could 

be available as a treatment option to the public, the associated 

costs and equitable access to such treatments must be conside-

red. With this in mind, the healthcare equity of cochlear implants 

act as a good parallel. Cochlear implantation (CI), continues to 

face significant global challenges in achieving healthcare equity 
(176). Disparities in access, utilization, and outcomes are heavily 

influenced by the social determinants of health, including 

socioeconomic status (SES), education, ethnicity, and geograp-

hic location. Worldwide, low- and middle-income countries 

experience significant inequities due to limited CI programs, 

insufficient public funding, and workforce shortages, leaving 

many eligible patients without access to this technology. Even 

in high-income nations, marginalized groups such as ethnic 

minorities and individuals from lower SES backgrounds often 

encounter delays in diagnosis and treatment or are unable to 

afford care. For example, global CI utilization rates remain below 

15%, reflecting systemic barriers to access and affordability (176). 

Addressing these disparities requires a multifaceted approach 

that includes expanding CI programs in underserved regions, 

increasing government subsidies or insurance coverage, and 

investing in healthcare infrastructure and professional training. 

These issues should be kept in mind when developing potential 

olfactory implantation programmes. However, further conside-

ration should be given to the cost to benefit ratio for OI, which 

may differ from that of CI. One may argue that the putative 

olfactory implant more heavily subserves quality of life than 

the cochlear implant. That being said, environmental safety, nu-

trition and mental health, as well as other unknown long-term 

effects of olfactory implantation may better justify their cost. 

Further work in this area is required.

In conclusion, the important ethical challenge for the develop-

ment of OIs is to identify the potential benefits that patients can 

expect and to balance them against the potential risks. 

Statement 10:

10. The ethical implications of OI should be considered during 

research and development stages, as well as at the point of 

clinical application.

10.1. Patients should be consulted during the research/deve-

lopment phase to help inform device priorities.

• Delphi result: Agreed (score 7-9 = 94.7%, mean score 8.6)

10.2. Standardized database reporting of surgical and device/

treatment related complications should be undertaken.

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.8)

10.3. Possibility of planned explantation of the device should 

be considered.

• Delphi result: Agreed (score 7-9 = 100%, mean score 8.7)

Conclusions
OI-driven olfactory perception could revolutionize the treat-

ment of patients with permanent and disabling olfactory loss. 

However, at present olfactory implants remain experimental, 

with significant potential associated risks, and have not yet been 

trialled in people. Careful selection and counselling of potential 

implantation candidates is required, as outlined in the prece-

ding sections. Together, this document aimed to provide an 

outline of current technology, possible targets, patient selection, 

limitations, and potential complications of implantation. It is 

hoped that this will be a useful resource and roadmap for the 

years to come.
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Directional electrodes have been particularly designed to regu-

late the intensity of stimulation depending on the spatial posi-

tion inside the target region using longitudinal and transversal 

current steering orientations. This feature may help reduce the 

aforementioned impact on surrounding structures (178).

The DBS electrode consists of a flexible polymer fibre that con-

tains a semi-rigid retractable metallic stylet. The conductor wires 

are embedded into the fibre wall (179). Although the distortion of 

the inserted electrodes is minimal, it can be seen on postopera-

tive imaging. One of the factors contributing to the difference 

between targeted and real location of the electrode can be due 

to brain shift (180). In practice, deep electrodes are not sensitive to 

brain shift, due to “neighbouring structures”. In contrast, cortical 

electrodes are more prone to error due to brain shifting (181).

Most of the morbidity associated with DBS may be attributed 

to: 1) problems with the treatment itself, 2) hardware issues, and 

3) stimulation complications. Complications associated with 

hardware include infections and erosion, electrode migration, 

hardware malfunction/breakdown, and electrical component 

failure. The prevailing rates of infection in individuals with chro-

nic DBS vary from 5% to 10% (182,183). The incidence of hardware-

related complications per electrode-year were found to be 8.4% 

2 decades ago (2002, 2009) (184–187) and are nowadays better, 

due to technical improvement (185). Recent research has shown 

a significant improvement in the precision of DBS electrode 

placement with the use of image guidance for direct anatomical 

targeting (188) and the use intraoperative imaging for correct 

placement confirmation. It is important to acknowledge that the 

precision of DBS surgery may be influenced by many variables, 

including the specific stereotactic system used, the proximity of 

the electrode trajectory to the ventricle, and the existence of in-

tracranial air. The present stereotactic frames, which are surgical 

instruments used for the insertion of electrodes, together with 

robotized systems, often exhibit an inherent average geometri-

cal inaccuracy of around 1 mm (189–192).

Specific targets
• Orbitofrontal cortex: SEEG electrodes are suitable for explo-

ration of the OFC. They are equipped with electrode connec-

tions capable of spanning from the lateral cortical convexity 

to the medial cortex. However, it is difficult to achieve precise 

placement with such electrodes, which may affect subsequent 

stimulation efficacy/specificity. For chronic stimulation, DBS may 

be considered.

• Insula: Implantation of an electrode into the insula has been 

Appendix

DBS
The primary objective of DBS surgery is to achieve precise and 

accurate placement of each electrode at the intended target 

location. Common indications include Parkinson’s Disease, 

tremors, dystonia, epilepsy, cluster headache, neuropathic pain, 

and several psychiatric disorders. The optimal placement of the 

electrode is determined by the patient’s clinical result and their 

ability to tolerate any unintended consequences that may arise 

from off-target stimulation.

DBS has been used for the treatment of epilepsy using two dif-

ferent methods: open-loop (application of stimulation for spe-

cified periods and thereafter discontinuing it) and closed-loop 

(system stimulates in response to neural activity [e.g., seizure 

activity] that can be detected by sensors). These methods may 

involve either low-frequency stimulation (LFS) ranging from 1 

to 10 Hz, or high-frequency stimulation (HFS) exceeding 100 Hz. 

HFS has been used in both open-loop and closed-loop approa-

ches (153,169,170).

LFS elicits a neuromodulatory impact on the tissue (171,172). 

Increased pulse widths can induce desynchronization in a larger 

proportion of the neuronal population. The length of stimula-

tion is also influenced by the style of stimulation. In closed-loop 

stimulations, the duration is typically brief. On the other hand, 

open-loop stimulations may have a wide range of durations.

Common stimulation parameters for DBS in movement disor-

ders satisfactorily include amplitudes between 2 mA and 4 mA, 

with a frequency between 90 and 210 Hz and pulse duration of 

60-90 microseconds. The stimulation is performed continuously 

without breaks and is biphasic to prevent tissue damage (137) 

and typically cathodic, meaning the active contact is program-

med negative relative to the stimulator casing (173). Contacts can 

be programmed independently or in combination (anodic and 

cathodic). Adequate amplitude stimulation leads to neuron 

depolarization, generating an action potential, while subthres-

hold stimulations can still alter the neurons’ own firing rates. The 

stimulation threshold varies with fibre thickness (174,175). Cathodic 

stimulation causes depolarization and is more power-efficient, 

but anodic stimulation, causing local hyperpolarization, has 

shown better clinical outcomes at the same amplitude (176). This 

effect depends on the electrode orientation relative to the sti-

mulated fibres, likely because anodic stimulation predominantly 

excites orthogonal nerve fibres, while cathodic stimulation 

modulates longitudinally running fibres (177).

Although electrode placement is very precise, side effects may 

arise from the spread of current to neighbouring fibres or nuclei. 

Appendix 1. More information on deep brain stimulation
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shown to be a safe procedure. When the hypothesis indicates 

opercular participation, orthogonal electrodes are implanted. 

However, oblique electrodes provide a greater sampling rate of 

the insular region (193).

• Piriform Cortex: The PC is involved in epilepsy, particularly in 

cases of mesial temporal lobe epilepsy (TLE) where unpleasant 

olfactory auras can occur (194–196). It is comparatively small, and its 

curved shape makes it challenging to achieve precise implan-

tation of an electrode in the central area between the frontal 

and temporal regions (131–134). Because of its curved shape, the 

thickness of the PC is reduced to only 1–2 mm (133). Additionally, 

the location of the middle cerebral artery introduces a possible 

complication of electrode implantation (135).

• Amygdala: The precise magnitude of electrical current propa-

gation originating from the electrodes and its interaction with 

cerebral architecture remains uncertain, representing a signifi-

cant constraint on the efficacy or specificity of electrical brain 

stimulation. To address the possible adverse effects of amygdala 

stimulation, it is essential for forthcoming research to concentra-

te on precise electrode placement and stimulation settings that 

may selectively influence sub-nuclei within the amygdala.

• Nucleus Accumbens: The potential therapeutic use of DBS tar-

geting the NAc is being investigated in the context of refractory 

psychiatric conditions, including obsessive-compulsive disorder, 

major depressive disorder, and substance use disorder (197,198). 

Davidson et al. placed electrodes in the NAc around 2.5 mm an-

terior and 4 mm ventral to the anterior boundary of the anterior 

commissure (199).

• Medial temporal lobe: The medial temporal lobe is a crucial 

component in the process of recording episodic memories that 

include many forms of spatial and temporal information and is 

vulnerable to aging and Alzheimer’s disease (200). The electrodes 

are typically implanted orthogonally through the middle tem-

poral structures in the medial temporal lobe (201–204).

Appendix 2. Brain stimulation devices

A. Intracortical Microelectrodes

Intracortical microelectrodes are electrodes placed along the 

shaft of small needles placed in an array configuration that 

penetrate in the cortex (205). The needles are typically fabricated 

out of silicon and the length of the needles is limited to reach 

shallow layers of neurons in the cortex. This type of electrode 

can have a large resolution - to the extent of recording single 

action potentials (AP) of neurons - but its use is limited by the 

damage done to the tissue due to the number of penetrating 

needles and their stiffness. Due to their high spatial resolution 

(up to 0.2 mm) (206), APs are excellent candidates as biomarkers 

for stimulation devices. Extracellularly recorded typical APs can 

reach amplitudes up to 500μV (207), with varying frequencies 
(208). But there are known firing rate instabilities in intracortical 

neural interfaces. Unaddressed instabilities can impair perfor-

mance by introducing biases in decoded movements. Therefore, 

recalibration processes are necessary to maintain the stability of 

the feedback signal (209). Furthermore, neural tissues are highly 

viscoelastic and soft, contrasting sharply with the traditionally 

rigid materials used in neural implants. This mismatch can lead 

to poor integration, inflammation, and ultimately, diminished 

efficacy of these implants. Therefore, the development of 

new, softer materials is important, that mimic the mechanical 

properties of neural tissues to enhance integration and reduce 

adverse reactions (146). The type of device used nowadays is usu-

ally implanted for less than 30 days but can be used for chronic 

implantation through Investigational Device Exemptions.

B. Depth electrode

Depth electrodes are centimetre-long arrays with electrodes 

placed along their length, typically used for sEEG and for DBS. 

While the first type is used on the short term and is approved 

for less than 30 days implantations, DBS systems are approved 

for chronic stimulation. DBS systems comprise a signal gene-

rator implanted in the chest or abdomen of the patients and 

are used, for the treatment of chronic movement disorders like 

Parkinson’s Disease, essential tremor or dystonia, or psychiatric 

disorders like depression or obsessive-compulsive disorder. The 

electrodes typically used have between 4 and 8 contacts. They 

are made of platinum-iridium and are 1.5mm in length, sepa-

rated by insulating material ranging from 0.5mm to 1.5mm. To 

create a more complex and directional stimulation field, axially 

divided contacts have been developed and implemented in 

clinical practice (210).

C. Electrocorticography

ECoG is performed by placing electrodes on the surface of the 

cortex and is generally meant for recording brain signals, but 

it can also be used for temporary stimulation (211). It requires a 

surgical procedure for placement and devices available on the 

market are only approved for short term or intraoperative sti-

mulation. While ECoG’s applications are currently limited to the 

brain’s surface, it is of great interest to develop highly flexible 

and compliant devices providing access to sulci (folds) of the 

brain (146). Companies such as Neurosoft Bioelectronics (https://

https://neurosoft-bio.com/technology
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neurosoft-bio.com/technology), Wise (https://wiseneuro.com/), 

InBrain Neuroelectronics (https://inbrain-neuroelectronics.

com/), Blackrock Neurotech (https://blackrockneurotech.com/), 

CorTec (https://www.cortec-neuro.com/) and others, are at the 

forefront of developing these soft and flexible implants for rou-

tine clinical use. Traditional ECoG placement requires a cranioto-

my, a large skull opening matching the size of the array. To limit 

the surgical invasiveness, research is exploring the minimally 

invasive deployment/insertion of ECoG arrays through a burr 

hole (~ 1cm2) or a slit (length based on the implant’s size and ~ 

800 µm in width) using fluidic pressure (212) or a stiff guide (213) for 

deployment and insertion, respectively.

Nerve stimulation devices
Because the OB has the shape of a high aspect ratio cylinder, 

in this respect it resembles peripheral nerves. Peripheral nerve 

stimulation and spinal cord stimulation devices benefit from 

years of development of electrical interfaces for both recording 

and stimulation (214,215) that could be thought to be adapted to 

the OB. As for the neural implants, most of these are meant for 

short-term implantation or for animal research, but some of 

these devices have made it to the market for chronic implanta-

tion, such as for sacral nerve (for bladder and bowel problems), 

vagal nerve (to treat epilepsy and depression) or hypoglossal 

nerve (to treat sleep apnoea) stimulation. The least invasive 

version of nerve electrical interfaces is commonly referred to as 

cuff electrodes. Cuff electrodes could be of particular interest 

to stimulate the OB because - as their name indicates - they are 

capable of wrapping around the target nerve: with electrodes 

placed on the inside surface of the device ensuring a good 

contact with the nerve around its whole perimeter. Typical cuff 

electrodes however only comprise a few contacts, even though 

MicroProbes (Gaithersburg, MD, USA) for example proposes cuff 

electrodes for nerve diameters from 5 mm down to 56 µm and 

with flexibility on cuff length, number of contacts and their ar-

rangement, such as 24 electrical contacts distributed along the 

perimeter of different rings as illustrated in Figure 5. The electro-

des are in hundreds of µm thick for stimulation, illustrating the 

requirement for thick electrodes when voltages are applied to 

electrodes in saline environments.

Figure 5. Illustration of a cuff electrode proposed by MicroProbes (permission to publish by MicroProbes, Gaithersburg, MD, USA).

https://neurosoft-bio.com/technology
https://wiseneuro.com/
https://inbrain-neuroelectronics.com/
https://inbrain-neuroelectronics.com/
https://blackrockneurotech.com/
https://www.cortec-neuro.com/
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