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Abstract

Introduction: Staphylococcus aureus (S. aureus) in chronic rhinosinusitis (CRS), particularly when localised intracellularly, is linked
to disease recalcitrance and poor post-surgical outcomes. Antibiotics frequently fail to penetrate the mammalian cell membrane,
resulting in an inability to address the intracellular component of S. aureus. This contributes to treatment failure and development
of antimicrobial resistance. We investigated the antimicrobial effects of simvastatin, a widely used, inexpensive medication with
extracellular and intracellular antimicrobial properties, against CRS-related S. aureus.

Methods: Simvastatin’s antimicrobial activity, in prodrug and hydroxy acid forms, was assessed against S. aureus using the broth
dilution method to determine the minimal inhibitory concentration (MIC). Intracellular activity of simvastatin was evaluated by
pre-treating S. aureus-infected LAD2 mast cells with simvastatin and performing colony forming unit (CFU) enumeration and
confocal microscopy. Cell viability was assessed using lactate dehydrogenase (LDH) assays.

Results: Simvastatin exhibited an extracellular MIC of 40 umol/l against S. aureus. Intracellularly, it significantly reduced the
bacterial burden by 46-fold in a dose-dependent manner between concentrations of 0.1-100 umol/I. Toxicity to LAD2 cells was
observed at 100 umol/I. Confocal microscopy revealed a lower percentage of infected cells in the group pretreated with 30 pmol/I
simvastatin (15.3%) compared to untreated cells (32.8%). Simvastatin hydroxy acid demonstrated no antimicrobial activity against
S.aureus.

Conclusions: Simvastatin demonstrates in vitro antimicrobial activity against CRS-related S. aureus with the potential for repur-
posing as a novel antibiotic-sparing topical agent for the treatment of refractory CRS. This could improve surgical outcomes and
reduce the risk of antimicrobial resistance.
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Introduction

Staphylococcus aureus (S. aureus) colonises the nasal cavity in
64% of patients with chronic rhinosinusitis and nasal polyps
(CRSWNP) compared with 33% of those without polyps (CRS-
sNP) and 20% in those without disease 2. Culture of S. aureus
pre- and post-operatively in patients with chronic rhinosinusitis
(CRS) is a poor prognostic indicator for disease recurrence and
recalcitrance ©\. S. aureus can persist in the nasal cavity of CRS
patients, evading the immune system and the effects of antimi-
crobials . This is achieved through internalisation within host
cells, sequestering it within the intracellular space or by creating
extracellular biofilms . 1n 2015, our group made the novel
observation that S. aureus internalises within mast cells in nasal
polyps, serving as a reservoir of bacteria that seeds the extracel-
lular space and perpetuates chronic inflammation in CRSWNP
patients 7. Intracellular S. aureus is challenging to treat, as the
mammalian cell wall prevents diffusion of many commonly used
antibiotics ©. Furthermore, intracellular S. aureus often forms
small colony variants (SCVs), which exhibit reduced metabolism
and increased cell wall thickness ©. Consequently, anti-metabo-
lic antibiotics have limited efficacy on these resistant variants.

In CRS, S. aureus appears to exist extracellularly and can tran-
sition phenotype into an intracellular SCV within epithelial

and mast cells in the nasal mucosa "', Interestingly, S. aureus
cultured from antibiotic-treated tissue and nasal swabs of the
middle meatus demonstrate identical genotypes, suggesting
the extracellular bacteria can switch phenotype to thrive

within cells 9. Furthermore, a significant association has been
observed between the presence of intracellular S. aureus in

the nasal mucosa and the need for revision endoscopic sinus
surgery, with patients harbouring intracellular S. aureus at a
higher risk of requiring additional surgery compared to those
without (85% vs 33%, P=0.0083) ©. Consequently, intracellular
S. aureus in CRS is commonly associated with refractory disease
and antibiotic resistance often resulting in the need for multiple
surgical procedures.

Given the challenges associated with intracellular S. aureus per-
sistence and antibiotic resistance, alternative therapeutic strate-
gies are being explored. Statins, widely used for their lipid-lowe-
ring effects, are now being investigated for diverse therapeutic
applications, including cancer prevention (2, neuroprotection
in Parkinson’s disease !'¥), treatment of chronic obstructive pul-
monary disease ™, and as an antimicrobial-sparing therapy for
tuberculosis "%. Notably, their potential role in S. aureus-related
conditions is gaining interest with studies showing efficacy in
treatment of S. aureus pneumonia, skin wound infections and
biofilm formation on simulated joint implants in rats ¢,

In relation to CRS, regular statin use has been associated with
areduced incidence in two large-scale studies. Gilani et al.
retrospectively analysed 10,965 patients and demonstrated a re-
duced odds ratio (OR) of being diagnosed with CRS (0.716; 95%
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Cl, 0.612-0.838) among those taking statin medications 2. Simi-
larly, Wilson et al. demonstrated a reduced OR of CRS for patients
taking statins on univariate (0.53; P<0.001) and multivariate
(0.79; P=0.03) regression analyses using over 10 million records
from the National Ambulatory Medical Survey of North America
@021 | ipophilic statins including simvastatin, atorvastatin, lova-
statin and fluvastatin have the capacity to cross cell membranes
and have exhibited anti-bacterial properties both extra- and
intracellularly ?2. In vitro studies have shown these statins to be
active against S. aureus at various concentrations, however sim-
vastatin demonstrates particularly potent activity characterised
by the lowest observed minimal inhibitory concentration (MIC)
ranging between 16 to 63 mg/L ?2. In vivo studies have demon-
strated that topical treatment of MRSA-infected mice wounds
with simvastatin reduces the bacterial load and significantly
improves wound healing with reductions in pro-inflammatory
cytokines IL-6, TNF-a and IL-13 2324,

Lipophilic statins such as simvastatin are administered orally

as an inactive prodrug which is metabolised in the liver into its
active p-hydroxy acid form. Simvastatin is 95% protein bound
and 5% is free in the serum and eliminated by hepatic metabo-
lism 2229 They mediate their effects through inhibition of the
mevalonate pathway, which is essential for isoprenoid synthesis
in humans and bacterial species, including S. aureus. By inhi-
bition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase
(HMG-CoA reductase), statins reduce cholesterol and isoprenoid
synthesis required for protein prenylation ©. In bacterial cells,
lipophilic statins decrease cholesterol, directly affecting bacterial
growth and protein production via a reduction in signalling pro-
tein prenylation %29, They also show broad antimicrobial effects
when directly applied to bacteria including virulent strains of S.

aureus, as well as methicillin and vancomycin resistant strains >
26, 28)

In mammalian cells, statins reduce cholesterol in lipid rafts, di-
minishing areas involved in bacterial translocation and intracel-
lularisation, as well as the pro-inflammatory response associated
with it. They also appear to modulate mast cell signalling, redu-
cing degranulation in response to IgE-dependent stimulation
and protecting cells from the effects of bacterial toxins 32,
Simvastatin is one of the most commonly used statins, well
known to reduce the risk of coronary deaths, myocardial infarc-
tions, ischemic strokes, and coronary revascularisation proce-
dures, in patients with elevated LDL cholesterol with infrequent
adverse effects reported, including myalgia, new-onset type 2
diabetes, and haemorrhagic stroke ©3.

Given these findings, we hypothesised that simvastatin, with its
low MIC, well-characterised pharmacokinetics and low-cost, may
reduce the burden of intracellular S. aureus in CRS. This repre-
sents an exciting opportunity to develop a novel targeted topi-
cal therapy for intracellular S. aureus in patients with refractory
CRS, which could also reduce our dependence on antibiotics and
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the risk of antimicrobial resistance which has reached epidemic
proportions worldwide.

Materials and methods

S. aureus receipt and culture

A well characterised strain of S. aureus 13439, cultured from the
intracellular space of polyp tissue from a patient with CRSWNP
was used for further study. Ethical approval for the receipt of
patient isolated strains of S. aureus was granted by Southamp-
ton and South-West Hampshire Research and Ethics committee
(reference code: REC 09/HO501/74).

Minimal inhibitory concentration of prodrug and activated
simvastatin

Prodrug simvastatin (Sigma-Aldrich) was dissolved in dime-
thylsulphoxide (DMSO) to create a 10mmol/I stock solution in
41.8% v/v DMSO. Activated simvastatin was prepared by dissol-
ving 4mg of simvastatin in 100pL of ethanol and 150ul of 0.1M
NaOH, followed by incubation at 50°C for 2 hours. The pH was
adjusted to 7 and the total volume was made up to a T0mmol/I|
solution as described by McKay et al. 7.

The MIC of prodrug and activated simvastatin against the
CRSWNP strain of S. aureus was calculated using the interna-
tional standard broth microdilution method ©®. S. aureus was
grown to the exponential growth phase, with absorbance at
600nm extrapolated using absorbance vs colony forming unit
(CFU) enumeration graphs and diluted to create a stock concen-
tration of 107 CFU/ml in Mueller Hinton broth, pH 7.0 (Sigma-
Aldrich). Wells contained 90ul of Mueller Hinton broth (Sigma
Aldrich) with serially decreasing concentrations of simvastatin.
Each well was inoculated with 10° CFUs of CRSWNP S. aureus
and incubated at 37°C in the presence of 5% CO, for 16 hours.
Absorbance was measured at 600nm using a microplate reader
(Molecular Devices).

Intracellular survival of S. aureus in LAD 2 cells with simva-
statin treatment

CRSwWNP S. aureus was grown in RPMI 1640 (Fisher Scientific)

at 37°C in the presence of 5% CO, to the exponential growth
phase. Absorbance at 600nm was calculated and extrapolated
using absorbance vs CFU enumeration graphs.

Laboratory of Allergic Diseases 2 (LAD2) human mast cells were
grown in antibiotic-free conditions in StemPro-34 media (Life
Technologies) containing 0.1TmM Stem Cell Factor (SCF; Pepro-
Tech). LAD2 cells (5x10° cells in 1 ml) were pre-incubated with
simvastatin at concentrations ranging from 0 - 100pumol/I for 16
hours. Each condition was co-cultured with RPMI 1640 (control)
or CRSWNP S. aureus (5x10° CFUs) and incubated for 6 hours.
Cultures were centrifuged at 2509 for 10 minutes and superna-
tants were collected for lactate dehydrogenase (LDH) assay.
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Cell pellets were resuspended with Tml 20ug/ml lysostaphin
(Sigma-Aldrich) containing StemPro-34 media with 0.1mM SCF
for 60 minutes. LAD2 cells were then centrifuged at 2509 for 10
minutes and washed three times in antibiotic free media. Su-
pernatants were streaked on Columbia blood agar (CBA) plates
to ensure no growth. Pellets were resuspended in STEMPRO-34
media with SCF and 0.5% Triton-X100, vortexed for 10 minutes
and used for serial CFU assessments using CBA plates.

Lactate dehydrogenase assay

A colorimetric LDH cytotoxicity assay (Sciencell Research
Laboratories, USA) was performed per the manufacturer’s
instructions. Control LAD2 cells (5x10° cells) were incubated in
media alone for 6 hours and centrifuged at 2509 for 10 minutes,
removing the supernatant to calculate the spontaneous release.
Maximal release was calculated by lysing cells after centrifuga-
tion in the presence of 0.5% Triton X-100 containing media with
vortexing and rolling for 30 minutes. The subsequent lysate was
centrifuged for 10 minutes at 250g and the supernatant was
extracted to determine maximal release.

For the assay, 150ul of controls and culture supernatants were
plated in flat-bottom 96-well plates (Greiner Bio-One, Austria)
and 60ulL of reaction mixture was added. The reaction was incu-
bated at room temperature in the dark for 20 minutes and the
reaction was stopped using 20ul of sodium oxamate per well.
Absorbance was measured at 490nM using a spectrophotome-
ter (Molecular Devices). Net release was calculated by subtrac-
ting the spontaneous release from each value and dividing by
maximal release to determine percentage LDH release.

Confocal microscopy

LAD?2 cells were preincubated with simvastatin at concentrati-
ons of 0, 1, 30 and 50umol/I for 16 hours, then co-cultured with
CRSwWNP S. aureus for 6 hours. Cells were resuspended in 0.5ml
20 pg/ml lysostaphin for 60 minutes and washed three times in
calcium and magnesium free phosphate-buffered saline (PBS).
Cells were resuspended in 15 uM Syto9 and 40uM propidium
iodide in 1 ml PBS (Thermo-Fisher, UK). A 50ul aliquot of each
suspension was placed on an Ibidi 8-well glass-bottom slide
(Thistle Scientific, UK) and imaged using a Leica TCS SP5/8
inverted confocal microscope (Lecia Microsystems, UK) with a
63x glycerol immersion lens. Images were collected with Leica
LAS-AF software and analysed using Fiji 2 9.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 9
software (GraphPad Software Inc, USA). Data was assessed for
normality using histogram plots and normality tests. One-way
ANOVA tests with Tukey’s multiple comparisons was used to
compare data between experiments.
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Figure 1. Minimal inhibitory concentration of prodrug and simvastatin
hydroxy acid. Minimal inhibitory concentrations of simvastatin (A+B),
DMSO (C) and simvastatin hydroxy acid (D+E) was calculated against
CRS S. aureus. Optical density at 600nm was used as a measure of bacte-
rial density. DMSO concentrations of 0.013, 0.026, 0.052, 0.105, 0.209,
0.418 v/v correspond to that used to dissolve 3.375, 6.75, 12.5, 25, 50,
100 pmol/L simvastatin, respectively. Nine experimental repeats were
completed for each variable with statistical analysis using one-way
ANOVA and Tukey’s multiple comparisons test. Bars represent the mean
of each experiment with dots showing the result of each experimental
repeat (*** P<0.001 **** P<0.0001).

Results

Minimal inhibitory concentration of activated and prodrug
simvastatin against S. aureus

To evaluate the concentration of simvastatin needed to inhibit
the growth of CRS-related S. aureus, we performed MIC calcu-
lations using the internationally standardised broth dilution
method (ISO 20776-1:2019) with a well-studied CRS strain of S.
aureus "3, Our results demonstrated a MIC of between 25-50
pumol (Figure 1A), further refined to 40 umol (Figure 1B).

As simvastatin was dissolved in DMSO, which has been shown to
affect biofilm formation and bacterial growth, we performed a
control experiment to rule out DMSO-related effects. The results
indicated no significant bactericidal activity from DMSO alone
at concentrations up to 0.418% v/v, corresponding to the 100
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Figure 2. Intracellular infection of simvastatin pretreated LAD2 cells with
S. aureus. Mean intracellular survival of CRSWNP S. aureus in co-culture
with LAD2 cells pretreated with simvastatin for 16 hrs at typical serum
(A) and topical application (B) concentrations. Mean of nine experimen-
tal repeats are displayed showing S. aureus CFU/ 5x10° LAD2 cells repre-
sented by bars with each dot demonstrating the result of each experi-
mental repeat. One-way ANOVA used with Tukey’s multiple comparisons
test used to determine statistical significance (*P<0.05,**P<0.01,
***%P<0.0001). Net LDH release of S. aureus infected cells was measured
for topical application concentrations (C) and net LDH release for unin-
fected cells exposed to identical topical application concentrations of
simvastatin are displayed (D). Mean of nine experimental repeats are
displayed showing percentage net LDH release represented by bars with
the result of each experimental repeat demonstrated by dots. One-way
ANOVA used with Tukey’s multiple comparisons test used to determine

statistical significance (****P<0.0001).

pmol/I simvastatin solution (Figure 1C).

Most simvastatin exists in its prodrug form (68-77%), with 95%
bound to serum proteins ®*. However, a small proportion is
present in its hydroxy acid active form. As few studies have
examined the antimicrobial activity of activated simvastatin,
we converted simvastatin to its hydroxy acid form and repeated
the MIC calculation. Activated simvastatin demonstrated no
antimicrobial activity against the CRSWNP strain of S. aureus
(Figure 1D,E).
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Figure 3. LAD2 mast cell infection with S. aureus after pre-treatment
with simvastatin. LAD2 cells were pre-treated with simvastatin and sub-
sequently cultured with CRS S. aureus for 6 hrs, followed by staining with
BacLight™ LIVE/DEAD™ staining. A) Representative confocal z-stacks of
each experimental condition are displayed. The percentage of infected
cells was calculated from six separate z-stack images, each containing
between 74-152 cells. Purple arrows indicate infected cells, blue arrows
highlight extracellular bacteria, yellow arrows denote apoptotic cells,
and red arrows show infected apoptotic cell bodies. B) A graphical rep-
resentation of the percentage of infected cells. Bars represent the mean
number of cells infected, with each dot demonstrating the percentage
of infected cells in each experimental repeat. Statistical analyses were
performed using one-way ANOVA and Tukey’s multiple comparisons
test (**P<0.01).

Simvastatin at oral administration serum concentrations
does not affect intracellular S. aureus survival

The concentrations of simvastatin used for MIC determina-

tion were beyond those typically observed in human serum.
Nevertheless, given the hydrophobic and lipophilic properties of
simvastatin which may cause it to localise to the cell membrane,
we hypothesised that it might still exert activity at these concen-
trations in co-culture.

To test this, LAD2 mast cells were pre-treated for 16 hours with
simvastatin at serum concentrations typically observed in pa-
tients taking the drug orally (19-31 nmol) ®.The mast cells were
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then inoculated with S. aureus. Our results showed no significant
effect on intracellular S. aureus survival at simvastatin concentra-
tions of 0-40nmol/I (Figure 2A).

Simvastatin at topical administration concentrations redu-
ces intracellular S. aureus survival

As simvastatin showed no effect at oral administration serum
concentrations, we tested higher concentrations that could be
achieved topically, as described by Horn et al. and Thangamani
et al. to evaluate intracellular antimicrobial activity and cellular
toxicity #*49., A sequential reduction in intracellular survival was
observed, ranging from 1.7x10° to 3.6x10° CFUs, between simva-
statin concentrations of 0 to 100 umol/I (Figure 2B).

Cytotoxicity assays

To assess cytotoxicity, LDH assays were performed on super-
natants. LAD2 cells treated with CRS S. aureus showed similar,
non-significant changes in LDH release between 0-30 umol/I
concentrations of simvastatin (65.5-73.1%). However, at concen-
trations of 100 pmol/I, LDH release increased (98.4%; P<0.0001)
(Figure 2C). A parallel experiment using uninfected LAD2 cells
treated with simvastatin for 6 hours confirmed no significant
toxicity below 30 umol/l with LDH release around 32.3-42.4%
which rose to 92.3% at 100 umol/l concentrations (P<0.001). As
the LDH levels were stable below 30 umol/l, these findings sug-
gest that the reduction in intracellular S. aureus survival was due
to simvastatin reducing bacterial internalisation and intracel-
lular survival rather than the number of viable host cells (Figure
2D). Furthermore, simvastatin appeared toxic to LAD2 cells at
concentrations of 100umol/I.

Confocal microscopy demonstrates reduced LAD2 cell infec-
tion in simvastatin-treated LAD2 cells

To validate these findings and determine whether the reduc-
tion in intracellular CFUs was due to there being fewer infected
cells, we used confocal microscopy and BacLight™ LIVE/DEAD™
imaging. LAD2 cells were pretreated with 0, 1, 30 and 50 umol/I
simvastatin and co-cultured with CRS-related S. aureus. At simva-
statin concentrations of 0 and 1 umol/I, 32.8-33.9% of LAD2 cells
were infected, compared to 15.3-17.1% at 30, and 50 pmol/I
(P<0.01; Figure 3). These results confirmed a significant reduct-
ion in infection rate with increasing simvastatin concentrations.

Discussion

Statins have been shown to possess significant anti-staphy-
lococcal properties, with patients taking oral statins demon-
strating a significantly reduced odds ratio of being diagnosed
with CRS ©%2V, Based on this, we hypothesised that statins
could potentially be repurposed as a novel anti-staphylococcal
treatment to reduce dependence on antibiotics in recalcitrant
S. aureus-related CRS. To explore this possibility, we focused on
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simvastatin, a widely prescribed statin with a lower MIC against
S. aureus compared to other statins 247,

In our study, we determined the MIC of prodrug simvastatin
against a well-characterised, virulent CRSWNP isolate of S. aureus
to be below 40pumol/l, consistent with previously reported MIC
values ranging from 38.1-398 pmol/I (16-167mg/I) % 232628

4243 However, this concentration far exceeds the levels typi-
cally observed in the serum of patients taking oral simvastatin
(19-31nmol/l) ®). We also found that the hydroxy acid form of
simvastatin exhibited no direct antimicrobial activity.

Previous studies have shown that simvastatin reduces intracel-
lular translocation and survival of S. aureus in HEK293A epithelial
cells at concentrations of 0.1-1 pmol/l, in a process that could be
reversed by addition of HMG-CoA reductase products “?.
Similarly, we found that simvastatin significantly reduced
intracellular S. aureus in LAD2 mast cells at concentrations of
1-100 pmol/I. At 30 pmol/I, simvastatin reduced the percentage
of infected cells from 32.8% vs 17.1%, highlighting its potential
to inhibit bacterial internalisation and survival.

The mechanisms underlying this effect likely involve the inhi-
bition of HMG-CoA reductase, which produces cholesterol and
isoprenoids in mammalian and bacterial cells #2490, Cholesterol is
a major component of lipid raft domains, which act as docking
sites for bacteria, and facilitate energy-efficient endocytosis “*
4, By reducing cholesterol, simvastatin may disrupt lipid raft
domains, potentially impairing S. aureus internalisation. Further-
more, simvastatin inhibits the prenylation of small GTPases
including CDC42 and Rac preventing their localisation to the
cell membrane and p85 and PI3K activation of actin-mediated
caveolation and endocytosis “%46:47),

S. aureus has an HMG-COA reductase enzyme (mvaA) which is
essential for its survival and is inhibited by statins, such as fluva-
statin @2, Statins reduce the production of isoprenoid intermedi-
ates involved in prenylation, a critical post-translational protein
modification of bacterial toxins, antibiotic efflux pumps and

cell wall components which are essential for bacterial survival,
growth and antimicrobial resistance 2. Simvastatin has been
shown to reduce S. aureus toxin production, including panton-
valentine leukocidin and a-haemolysin at concentrations
similar to those tested in our study “3. Alpha-haemolysin plays

a critical role in intracellular translocation by assisting escape
from phagosomes “&49, Recent reports have shown that statins
induce disassembly of functional membrane microdomains in
MRSA which stabilise proteins during infection via recruitment
of flotilin. This leads to denatured antimicrobial resistance pro-
teins such as penicillin binding protein 2a and accumulation of
unfolded proteins, which affect bacterial cell viability and induce
penicillin susceptibility ©°.

Given its well-established safety profile, affordability and

ease of manufacture, these preliminary findings support the
potential for simvastatin to be repurposed as a novel topical

Simvastatin antimicrobial action against S. aureus

anti-staphylococcal agent for use in refractory S. aureus-related
CRS. The accessibility of the nasal cavity to topical treatments
such as creams, ointments, sprays and drops, further supports
the feasibility of achieving the required concentrations for anti-
staphylococcal effects.

This study has some limitations. Statins have been reported to
reduce IgE-mediated signalling in RBL-2H3 cell lines, leading

to reduced degranulation and potentially reduced bacterial
entry via membrane recycling ©%5". We were unable to evaluate
this mechanism due to a common loss-of-function mutation

in the high affinity receptor for IgE in LAD2 cells. Nevertheless,
we tested the MRGPRX2 receptor which uses similar signalling
pathways and found no effect of simvastatin on degranulation
(data not included). Whilst tissue-derived nasal polyp mast cells
could have been used, these are notoriously difficult to isolate
with a typically low yield and inter-patient heterogeneity. This
would have rendered this approach both costly and impractical.
Delivering lipophilic simvastatin to the sinuses at therapeutically
relevant concentrations is likely to be problematic. While simva-
statin ointments at 1% and 3% have been formulated and tested
on human skin in previous trials, delivering this at optimal
antimicrobial concentrations in a high-volume nasal saline rinse
may be more challenging ©2.

Evidently clinical validation of these in vitro findings, including
safety and tolerability profiles, will be required. Future in vivo
antimicrobial efficacy clinical studies in patients with S. aureus-
related CRS will be needed to prove therapeutic efficacy. Inves-
tigation of the absorption distribution and retention of topically
applied simvastatin to the nasal mucosa will be also required to
establish optimal dosing strategies. These studies are currently
underway, and the results will be reported in due course.

Conclusion

At typical serum concentrations observed in patients taking
oral simvastatin, neither the prodrug nor hydroxy acid forms

of simvastatin exhibited significant anti-staphylococcal effects.
However, at concentrations achievable through the topical
application route, simvastatin demonstrated a direct anti-
staphylococcal effect. Treatment of mast cells with simvastatin
significantly reduced both the S. aureus intracellular burden and
the proportion of infected cells. Given the accessibility of the
nasal cavity to topical treatments, topical simvastatin offers a
promising approach for treating refractory S. aureus-related CRS,
and could help reduce the need for revision sinus surgery and
the risk of antimicrobial resistance which has reached epidemic
proportions globally.
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