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Abstract
Background: Sinonasal pathology can be complex and requires a systematic and meticulous approach. Artificial Intelligence (AI) 

has the potential to improve diagnostic accuracy and efficiency in sinonasal imaging, but its clinical applicability remains an area 

of ongoing research. This systematic review evaluates the methodologies and clinical relevance of AI in detecting sinonasal pa-

thology through radiological imaging. Methodology: Key search terms included “artificial intelligence,” “deep learning,” “machine 

learning,” “neural network,” and “paranasal sinuses,”. Abstract and full-text screening was conducted using predefined inclusion and 

exclusion criteria. Data were extracted on study design, AI architectures used (e.g., Convolutional Neural Networks (CNN), Machine 

Learning classifiers), and clinical characteristics, such as imaging modality (e.g., Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI)). Results: A total of 53 studies were analyzed, with 85% retrospective, 68% single-center, and 92.5% using internal 

databases. CT was the most common imaging modality (60.4%), and chronic rhinosinusitis without nasal polyposis (CRSsNP) was 

the most studied condition (34.0%). Forty-one studies employed neural networks, with classification as the most frequent AI task 

(35.8%). Key performance metrics included Area Under the Curve (AUC), accuracy, sensitivity, specificity, precision, and F1-score. 

Quality assessment based on CONSORT-AI yielded a mean score of 16.0 ± 2.  Conclusions: AI shows promise in improving sino-

nasal imaging interpretation. However, as existing research is predominantly retrospective and single-center, further studies are 

needed to evaluate AI’s generalizability and applicability. More research is also required to explore AI's role in treatment planning 

and post-treatment prediction for clinical integration. 
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Introduction
The sinonasal complex includes the nasal cavity and paranasal 

sinuses, which are further subdivided into 4 anatomic compo-

nents: maxillary, ethmoid, frontal, and sphenoid sinuses (1). The 

proximity of the paranasal sinuses to critical structures such as 

the orbit, anterior and middle cranial fossae, cranial nerves, and 

the internal carotid artery emphasizes the importance of ac-

curate imaging interpretation, particularly in cases involving in-

vasive disease. Sinonasal pathology encompasses a wide range 

of conditions, varying from benign inflammatory disorders, such 

as chronic rhinosinusitis, to malignant tumors (2). While imaging 

techniques, such as CT and MRI are widely used for diagnosing 

such conditions, their interpretation is often prone to inter-

observer variability and can lead to diagnostic delays (3-5). 

Given these challenges, Artificial Intelligence (AI), particularly 

machine learning (ML) and deep learning (DL) models, has 

emerged as a potential solution to improve diagnostic accuracy 

and efficiency, reduce physicians’ workload, and minimize diag-

nostic errors (5). ML involves algorithms that learn from data to 

generate predictions, while the more advanced form of ML, DL, 

utilizes neural networks with multiple layers to automatically ex-

tract features from complex data, especially images. Among the 

most widely used DL models are convolutional neural networks 

(CNNs), which are particularly effective in image-related tasks 

like segmentation and classification (6).

Despite advancements in AI applications, several knowledge 

gaps persist in this domain, including a lack of studies focused 

on developing AI systems that can integrate information from 

multiple imaging techniques (e.g., CT, MRI, endoscopy), the ab-

sence of established regulatory frameworks for evaluating and 

deploying AI algorithms in clinical practice, limited multi-institu-

tional collaborations, insufficient AI research in surgical planning 

and assessment for rhinology, the limited application of AI in 

predicting long-term patient outcomes, disease recurrence, and 

treatment responses, as well as the often unaddressed bias in 

the original data sets used for AI training (7, 8). In addition, AI in 

sinonasal imaging has more room for development and remains 

underexplored compared to other medical fields, such as on-

cology, due to the region’s complex anatomy and the relatively 

limited application of AI in sinonasal conditions compared to 

oncological care (7).

This systematic review aims to provide a descriptive sum-

mary and evaluation of AI methodologies designed to detect 

sinonasal pathology using radiological imaging. Specifically, it 

comprehensively analyses the clinical design of original studies 

in this domain and assesses their quality. The reviewed literature 

successfully demonstrates the potential and limitations of AI 

applications in supporting clinicians’ work, which will be further 

explored throughout the manuscript.

Materials and methods
Study protocol 

For this systematic review, the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) guidelines (9) were 

adhered to. The study protocol was prospectively registered in 

the PROSPERO database (CRD42024596954). Since no original 

human or animal research was conducted and thus the study 

relied solely on published anonymized data, ethical committee 

approval and patient consent were not required. The literature 

search was limited to human studies.

Inclusion and exclusion criteria

All original studies involving human subjects that employed AI 

techniques in tasks such as segmentation, interpretation, clas-

sification, or other relevant applications on sinonasal radiologi-

cal images were included. For clarity, the AI tasks identified in 

the included studies were categorized as follows: classification, 

which involves assigning labels to imaging data (e.g., distin-

guishing between benign and malignant lesions); segmentation, 

which delineates anatomical structures or pathological regions 

within the sinonasal complex; diagnosis, which aids in detecting 

and characterizing sinonasal pathology; identification, which 

recognizes specific features or anomalies within the imaging 

data; treatment planning, which assists clinicians in selecting 

optimal therapeutic strategies based on imaging analysis; and 

post-treatment course prediction, which forecasts disease pro-

gression, recurrence, or treatment outcomes based on AI-driven 

analysis (10).

Studies were excluded if they met any of the following criteria: 

(a) studies not describing AI applications in human sinonasal 

radiological imaging; (b) abstract or full text unavailable; (c) arti-

cles not published in English; (d) narrative or systematic reviews, 

case reports, book chapters, preprint articles, commentaries, or 

conference papers.

The selection criteria for this study were structured using the 

PICOTS model, which considers the following elements: 

• Population (P): Human studies applying AI algorithms for 

the interpretation and analysis of paranasal sinus radiologi-

cal images.

• Intervention (I): Any AI-based methodology employed for 

radiological imaging interpretation and analysis.

• Comparison (C): Imaging analysis and diagnostic accuracy 

as performed by clinicians.

• Outcomes (O): Primary outcomes included classification 

and validation. Secondary outcomes encompassed identi-

fication and diagnostic accuracy, treatment planning, and 

predictions of the post-treatment course.

• Timing (T): No restrictions on the study period, including 

both retrospective and prospective studies.
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• Setting (S): Clinical and research settings involving radiolo-

gical imaging of paranasal sinuses

Information sources and database search

A comprehensive literature search was conducted using Pub-

Med, MEDLINE, EMBASE, and the Cochrane Library databases. 

The final search was performed on December 10, 2024. All 

retrieved articles were reviewed based on the predefined eligibi-

lity criteria. The search included both Medical Subject Headings 

(MeSH) and free-text terms related to AI applications in radiolo-

gical imaging of sinonasal pathology, specifically: “artificial intel-

ligence,” “deep learning,” “machine learning,” “neural network,” 

“paranasal sinuses,” “maxillary sinus,” “frontal sinus,” “ethmoid 

sinus,” “sphenoid sinus,” “maxilla,” “imaging,” “scan,” “computed 

tomography,” “magnetic resonance imaging,” and “X-ray.”

Study selection and data retrieval

The full-text screening was carried out independently by two 

authors. Any conflicts were addressed and resolved by the 

senior author. A detailed description of the search methodology 

and the study inclusion procedure is provided in the PRISMA 

flowchart (Figure 1). The following data were extracted: (a) study 

characteristics (name of first author and year of publication, 

dataset, type of AI used, evaluation metrics, and main outco-

mes);  (b) study design (data collection methods, study centres 

involved, database sources, and performance comparisons); (c) 

clinical characteristics (imaging modality, conditions or specific 

pathologies of interest); and (d) AI approach (AI architecture 

and task, learning approach, data augmentation, and validation 

process). 

Quality assessment

To assess the quality of the studies, the CONSORT-AI extension 

was applied, which provides guidelines for clinical trials utilizing 

AI architectures (11). Building on the approach adopted by Gray 

et al. in 2012 (12), who used the 2001 version of the CONSORT 

statement (13) to develop a 30-point checklist that assigned one 

point to each item to evaluate trial reporting, we developed 

a 20-point scoring system. Each evaluation parameter was as-

signed equal weight, resulting in a total score of 20 per study. 

All criteria were based on the CONSORT-AI extension, with one 

additional item included in the methods section. This extra 

item addressed the validation methodology of AI applicati-

ons, aiming to clarify a key aspect of model performance and 

generalization. CONSORT-AI elements that were not relevant 

to the dataset were excluded. The highest possible score for a 

study was 20 (indicating the highest quality), and the lowest 

possible was 0 (indicating the lowest quality). The variability in 

study quality will be demonstrated by comparing the highest 

and lowest scores numerically, and by calculating the mean and 

standard deviation of all quality scores. The 20-point scoring 

system is outlined in Table 1. While the original CONSORT state-

ment, first published in 1996 and periodically updated, does not 

recommend using the checklist to assign numerical scores (14, 15), 

this approach has proven valuable in providing a comprehen-

sive review of specific reporting items and offering an overall 

assessment of reporting standards.

Results
Included articles

The literature search identified 1,235 records in total. After re-

moving duplicates, two reviewers independently conducted the 

screening process. Title and abstract screening of the remaining 

587 records led to the exclusion of 510 articles. Subsequently, 77 

articles were sought for retrieval, of which 61 met the criteria for 

full-text evaluation. Additionally, 1 more publication was manu-

ally retrieved. Following the full-text screening, 53 studies met 

the predefined inclusion criteria and were included in the ana-

lysis (16 – 68). Further details on the article selection methodology 

can be found in Figure 1, with a summary of included studies 

provided in Table 2. In Table 2, key performance differences are 

highlighted in bold text. 

Study design

Information about the study design is summarized in Table 3. 

Most studies (45, 85.0%) adopted a retrospective design, while 8 

(15.1%) were prospective. Regarding study center involvement, 

Figure 1. Flowchart of the search methodology and study selection 

process in adherence to the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines
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36 studies (68.0%) were single-center, 13 (24.5%) were multi-

center, and 4 (7.5%) did not specify the center type. In terms of 

data sources, the majority (49, 92.5%) used internal databases. 

Only 2 studies (3.8%) relied on public databases, while 1 study 

(1.9%) combined internal and public databases, and another 

(1.9%) did not specify the data source. Performance compari-

sons varied across studies: 15 (28.3%) compared AI systems to 

other AI models, 30 (56.6%) to human performance, and 1 (1.9%) 

to both AI and human performance. Additionally, 4 studies 

(7.5%) compared AI to traditional algorithmic methods, and 3 

(5.7%) did not specify the comparison type. 

Clinical approach

Among the included studies (n=53), the most used imaging mo-

dality was CT, utilized in 32 studies (60.4%). MRI was employed 

in 15 studies (28.3%), while nasopharynx X-ray, alone or in 

combination with CT, was used in 6 studies (11.4%). Regarding 

the main conditions or pathologies of interest, 9 studies (17.0%) 

focused on chronic rhinosinusitis without nasal polyposis 

(CRSsNP), and 4 studies (7.5%) addressed chronic rhinosinusitis 

with nasal polyposis (CRSwNP). Eosinophilic CRS (eCRS) was 

investigated in 2 studies (3.8%), sinus fungal ball (mycetoma) 

rhinosinusitis in 3 studies (5.7%), and sphenoid sinus pneumati-

zation in 1 study (1.9%). Inverted Schneiderian papilloma and/

or malignant sinonasal neoplasms were examined in 13 studies 

(24.5%), maxillary sinusitis in 5 (9.4%), paranasal sinus mucosal 

abnormalities in 7 (13.2), and other sinonasal pathologies in 

9 studies (17.0%). Table 4 provides a summary of the above 

information. 

AI methodology

Key points of the AI methodology are presented in Table 5. 

Among the included studies (n=53), CNNs were the most 

utilized AI architecture, featured in 39 studies (73.6%). Artificial 

Neural Networks (ANNs) and other neural networks were each 

used in 1 study (1.9%), while various other deep learning algo-

rithms were applied in 2 studies (3.8%). Machine Learning (ML) 

classifiers were employed in 10 studies (18.9%). Regarding AI 

tasks, classification was the most frequently reported, appearing 

in 19 studies (35.8%), followed by diagnosis in 11 studies (20.8%) 

Table 1. A 20-point scoring system derived from the CONSORT-AI extension.

Article section Assessment item Description N of studies re-
porting item (%)

Title and abstract Summary 
structure

Declare the use of the AI application within the study context in the title and/or 
abstract

53 (100.0)

Introduction Background and 
objectives

Describe the intended use of the AI application within the clinical pathway (pur-
pose, intended users etc.)

52 (98.1)

Methods Eligibility criteria Specify the inclusion and exclusion criteria for participants 46 (86.8)

Specify the inclusion and exclusion criteria for input data 45 (84.9)

Interventions Specify the version of the applied AI architecture 42 (79.2)

Explain how the input data were obtained and selected for the AI application 50 (94.3)

Explain how low-quality or missing data were evaluated and handled 23 (43.4)

State whether there was a human-AI collaboration in the management of the input 
data 

43 (81.1)

Define the output of the AI application 53 (100.0)

Validation Explain the validation methodology used to assess the AI architecture 51 (96.2)

Sample size Explain how the sample size was established and justified 18 (34.0)

Analysis Declare the statistical methods used for data analysis 51 (96.2)

Results Participants Specify the number of participants who were randomly selected and assessed for 
the primary outcome

33 (62.3)

Mention the baseline demographic and clinical features of the participants 38 (71.7)

Outcomes Report the results for each outcome (and its precision, e.g. 95% confidence interval) 51 (96.2)

Report any performance errors and how they were retrieved and analyzed. If not 
planned or performed, explain the reasons

30 (56.6)

Discussion Limitations Explain the limitations of the study (causes of potential bias, imprecisions etc.) 48 (90.6)

Generalizability Explain the generalizability (external validity, applicability) of the study outcomes 27 (50.9)

Interpretation Present an interpretation in accordance with the results, discuss the advantages 
and disadvantages and examine other relevant data

52 (98.1)

Other Funding Declare any sources of financial and other support 40 (75.5)
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Table 2. Summary of all included studies.

Author, Year Dataset Type of AI Evaluation metrics Main outcomes

Peng et al., 2024 
(16)

Axial CT imaging data from 
107 patients

DL; two-stage 
model (VGG19 and 
Faster-RCNN with 
FPN)

Accuracy, mAP, AP50 Classification accuracy: 92.7%; Detection mAP: 
0.7; AP50: 0.8;

Zou et al., 2024 (17) CT scans and biopsy results 
of 192 patients

Modified ResNet AUC, Accuracy, Recall, 
Precision, F1-Score, 
Confusion Matrix

AUC: 99.1%, Accuracy: 96.5%, F1-Score: 97.0%

Lai S et al., 2024 
(18)

22,265 CT images from 192 
patients

ResNet-18 Accuracy, Precision, 
Recall, Specificity, AUC

Accuracy: 98.4%, Precision: 98.1%, Recall: 
98.1%, Specificity: 98.7%, AUC: 98.4%

Kwon et al, 2024 
(19)

1080 CT images (2158 
maxillary sinuses)

YOLOv8 Precision, F1-Score, mAP, 
IoU

Overall precision: 97.1%; F1-score: 95.4%; 
Precision on difficult dataset: 92.4%

Bhattacharya et 
al., 2024 (20)

2619 participants with 
cranial MRI scans

3D CNN (Den-
seNet)

AUC, Sensitivity, Speci-
ficity

AUC: 95.0%; Sensitivity: 85.0%; Specificity: 
90.0%

Du et al., 2024 (21) 29,993 CT images from 
patients with CRSwNP

ResNet-18 Accuracy, Recall, Preci-
sion, Confusion Matrix, 
ROC Curve, AUC, Kappa 
Score

AUC: 99.3% (training), 96.6% (validation), 
96.3% (testing); Kappa: 98.5% (training), 92.8% 
(validation), 92.2% (testing); Overall AUC: 
96.2%

Whangbo et al., 
2024 (22)

39,605 paranasal CT scans 
from 201 patients

3D U-Net variations F1 score, True positive 
rate

F1 score: 84.3% (normal test set), 79.3% (ab-
normal test set)

Wang et al., 2024 
(23)

MRI scans from 1711 adult 
patients

ML classifiers AUC, Accuracy, NPV, PPV, 
Sensitivity, Specificity, 
Kappa value

AUC: 94.7% (training), 84.9% (validation), 
87.1% (test1), 88.7% (test2) for the fusion 
model (T1WI + T2WI + CE-T1WI); highest AUC 
achieved in fusion model;

Gudapati et al., 
2024 (24)

548 axial CT images from 
three FESS candidates

ML classifiers IoU, DSC Soft tissue DSC: 94.0%-98.0%; Bone DSC: 30.0-
66.0%; IoU for soft tissue: 89.0-97.0%; IoU for 
bone: 44.0-49.0%

Cheong et al., 
2024 (25)

OASIS-3 MRI dataset AutoML Precision, Sensitivity, 
Accuracy

Sensitivity: 91.3%; Precision: 92.8%; Accuracy: 
92.0%

Maria Jesi et al., 
2023 (26)

N/S CNN Accuracy, F-measure, 
Specificity, Sensitivity

CNN classifier: 99.0% accuracy; 98.7% Sensiti-
vity; 98.9% 

Celebi et al., 2023 
(27)

298 CBCT images Res-Swin-UNet F1-score, Accuracy, IoU F1-score: 91.7%, Accuracy: 99.0%, IoU: 84.7%; 
The model outperforms state-of-the-art 
models

Park et al., 2024 (28) MRI from 68 patients ML radiomics and 
classifiers

AUC AUC for radiomics model: 83.8%, AUC for com-
bined model (clinical and radiomics): 85.0%

Massey et al., 
2024 (29)

CT scans from 84 CRS 
patients

CNN AUC AUC for OMC obstruction classification: 79.0% 
(left) and 77.0% (right)

Lin et al., 2024 (30) MRI scans from 231 SNSCC 
patients

ML and DL models AUC AUC for RS-DLR in the test set: 81.7%. RS-DLR 
outperformed RS-DTL and RS-HC in the trai-
ning cohort (p < 0.050)

Bhattacharya et 
al., 2023 (31)

Maxillary Sinuses MRI scans 
of 299 patients

CNN AUPRC Sampling and MIE improved performance 
by 21.9 ± 11.9% and 4.3 ± 5.0%, respecti-
vely. Sampling and MIE combined increased 
performance by 28.9 ± 12.8% and 9.9 ± 4.0%,  
respectively

Xiong et al., 2024 
(32)

CT scans from 437 patients ML classifiers AUC, Sensitivity, Specifi-
city, Negative Likelihood 
Ratio, Positive Likelihood 
Ratio, Calibration Curve, 
Brier Score

AUC: 89.0%, Sensitivity: 81.0% Specificity: 
75.0%, Positive Likelihood Ratio: 3.2, Negative 
Likelihood Ratio: 0.3, Brier Score: 0.1

Bhattacharya et 
al., 2024 (33)

MRI scans from 1067 label-
led and 1559 unlabeled 
patients

3D CAE; U-Net-
inspired architec-
ture with ResNet18 
backbone

AUPRC AUPRC: 79.0% on 10.0% of the annotated da-
taset; outperforming Self-Supervised Learning 
Methods

Corrected Proof



6

AI in sinonasal pathology detection

Rhinology Vol 63, No 4, August 2025

Author, Year Dataset Type of AI Evaluation metrics Main outcomes

Sukswai et al., 
2024 (34)

CT from 1539 adult CRS 
patients

DL models Accuracy, Sensitivity 
(Recall), Specificity, Preci-
sion, F1-score, ROC AUC, 
Kappa agreement

MobileNetV3: 81.0% accuracy, 47.4% sensiti-
vity, 87.9% specificity, 66.8% precision, 67.2% 
F1-score.
YOLOv8X-SEG: 94.1% accuracy, 85.9% sensiti-
vity, 95.8% specificity, 88.9% precision, 89.8% 
F1-score.
Rhinologist: 93.5% accuracy, 84.6% sensitivity, 
95.3% specificity, 78.6% precision, 81.5% 
F1-score.

Zeng et al., 2023 
(35)

CBCT images (200 test set, 
total dataset split 7:2:1)

DL models AUC, AUPRC, Accuracy, 
Precision, Recall, Specifi-
city, F1-score, McNemar 
Test, Kappa Agreement

AUC: 95.3%, AUPRC: 88.7%.
Accuracy at optimal cut-off: >90%. Dentist-
model comparison: Model outperforms dental 
students.

Taylor et al., 2023 
(36)

Total 898 CT slices from 
462 patients

CNN Accuracy, CI Overall weighted accuracy: 85.9%.
Confidence intervals for each category: 87.1–
97.0, 79.9–92.7, and 78.0–91.4, respectively

Lin et al., 2023 (37) MRI scans from 265 SNSCC 
patients

DL segmentation 
model

DC, AUC, Accuracy RS-Combined: AUC 85.4% and accuracy 74.3%; 
DC: 72.0% (T2WI), 72.7% (T1c), 75.6% (ADC)

Ha et al., 2023 (38) 426 maxillary sinuses (213 
patients)

CNN Accuracy, Sensitivity, 
Specificity

Accuracy (healthy sinuses classification): 
98.0%; Accuracy (cysts or tumors classifica-
tion): 90.0%

Yoo et al., 2023 (39) CBCT images of maxillary 
sinuses from 67 patients

U-Net Jaccard coefficient, DSC, 
Precision, Recall

Best performance for maxillary sinus lesions 
segmentation: Jaccard = 78.7%, Dice = 87.5%, 
Precision = 89.7%, Recall = 85.8%

He et al., 2023 (40) CT images from 265 CRS 
patients (2 centres)

Multi-task DL AUC, DSC Segmentation (DSC 83.3%); Recurrence Pre-
diction (AUC 74.2%)

Zhou et al., 2022 
(41)

CT images from 109 
CRSwNP patients

ANN AUC, Sensitivity, Speci-
ficity

AUC: 97.6% (ANN 4 features), 97.0% (ANN 15 
features), Better than LR models (AUC: 90.2% 
and 84.5%)

Hua et al., 2022 (42) CT images from 878 CRS 
patients

CNN Dice coefficient, AUC, Ac-
curacy, Confusion matrix, 
Grad-CAM interpreta-
bility

AUC for classification models: 84.8% (single 
image), 85.3%  (per patient); Mean accuracy: 
76.2% (single image), 89.3% (per patient)

Zhang et al., 2023 
(43)

133 MRI scans ML models Sensitivity, specificity, 
accuracy, precision, F1 
score, AUC-ROC, AUC-
PRC

SVM model with 7 features: specificity 90.3%, 
accuracy 90.0%, precision 72.7%, F1 score 
80.0%, AUC-PRC 91.9%, sensitivity 88.9%. Out-
performed radiology residents (P < 0.05), but 
not experienced radiologists (P > 0.05)

Kim et al., 2023 (44) Pseudo-CBCT data; Internal 
dataset (n = 512)

CNN Micro-average AUC, 
macro-average AUC, 
accuracy, sensitivity, 
precision, F1 score

Proposed method improved micro-average 
AUC by 7.4%, macro-average AUC by 5.6%, 
accuracy by 9.6%, and human diagnosis ac-
curacy by 11%

Sun et al., 2022 (45) MRI scans from 1048 
patients

ResNet50 AUC, Accuracy, Delong 
test

Model combining tumor and peritumor ROIs 
using multimodal images: AUC: 88.4%, ACC: 
78.1%

Hung et al., 2022 
(46)

445 CBCT scans (890 maxil-
lary sinuses)

CNN AUC, DSC Mucosal thickening: AUC 91.0% (low-dose), 
89.0%(full-dose) and DSC 72.9% (low-dose), 
66.3% (full-dose); Mucosal retention cysts: 
AUC 84.0% (low-dose), 93.0% (full-dose) and 
DSC 67.8% (low-dose), 78.7%(full-dose)

Kong et al., 2022 
(47)

Paranasal sinus X-ray ima-
ges (890 maxillary sinuses)

CNN Accuracy, Sensitivity, 
Specificity, F1-score, PPV, 
NPV, AUC

Best performance with GAN-based data: AUC 
92.4%, accuracy 83.3%, sensitivity 87.9%, 
specificity 78.8%, F1-score 84.1%, PPV 81.0%, 
NPV 86.7%

Lim et al., 2022 (48) 587 PNS series from 279 
males and 308 females

CNN AUC AUC: 72.2% (sinusitis classification), AUC: 
75.0% (left maxillary sinusitis), AUC: 70.0% 
(right maxillary sinusitis)

Table 2 continued. Summary of all included studies.
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Author, Year Dataset Type of AI Evaluation metrics Main outcomes

Morgan et al., 
2022 (49)

264 sinuses from CBCT 
images

3D U-Net DSC, Inter-observer 
reliability

Automated segmentation of maxillary sinus: 
Time: 0.4 min (automatic) vs. 60.8 min (semi-
automatic), DSC: 98.4%, Inter-observer DSC: 
99.6%

Liu et al., 2022 (50) 90 patients with 446 MRI 
images

CNN Sensitivity, Specificity, 
Accuracy, AUC

Sensitivity: 66.7%, Specificity: 81.5%, Accuracy: 
77.9%, AUC:  80.0%

Serindere et al., 
2022 (51)

148 healthy and 148 
inflamed sinus images (PRs 
and CBCTs)

CNN Accuracy, Sensitivity, 
Specificity, AUC, PPV, 
NPV

Accuracy (PRs): 75.7%, Sensitivity (PRs): 75.7%, 
Specificity (PRs): 75.7%; Accuracy (CBCT): 
99.7%, Sensitivity (CBCT): 100%, Specificity 
(CBCT): 99.3%

Beswick et al., 
2022 (52)

30 PwCF with CRS (25 
completed study)

DL models Change in sinus CT 
opacification (%SO), 
SNOT-22, Health utility, 
Productivity loss

% SO improvement: 22.9%, SNOT-22 improve-
ment: 15.3, Health utility improvement: 0.068, 
Productivity loss improvement (all p < 0.049)

Li et al., 2022 (53) 3382 CT slices from 136 
patients

CNN Accuracy, AUC Accuracy: 88.4%, AUC: 87.0%

Gu et al., 2022 (54) MRI data from 247 patients ML classifiers AUC, Calibration Curves AUC for T2WI-SVM model: 87.8% and 91.4% 
for test sets. Combined model AUC: 91.2% 
and 92.7%. Combined model outperformed 
clinical model (P = 0.011, 0.005)

Corino et al., 
2022 (55)

T1 and T2 Weighted MRIs 
from 50 sinonasal cancer 
patients 

ML classifiers AUC, Accuracy AUC for T1: 79.0%, T2: 76.0%, ADC: 93.0%

Kuo et al., 2022 (56) 175 CT sets, 50 participants CNN DC, MioU, Pixel Accuracy, 
ROC-AUC

Dice coefficient: 91.57%, MioU: 89.43%, Pixel 
accuracy: 99.75%

Nakagawa et al., 
2022 (57)

168 lesions with malignant 
nasal or sinonasal tumors

CNN Accuracy CNN Accuracy: 92.0%. Radiologists' accuracy 
with model assistance: 94.0% and 100.0% in 
second reading

Qi et al., 2021 (58) 660 CT images (training 
and validation), 200 images 
(testing)

CNN DSC CNN: Dice improvement of 25.0% over FLS and 
12.0% over CRF-FCN

Jung et al., 2021 
(59)

83 CBCT dental volumes 3D nnU-Net DSC DL improved segmentation accuracy for air 
(DSCs: 92.0%, 92.5%, 93.0%) and lesion (DSCs: 
77.0%, 75.0%, 76.0%)

Jeon et al., 2021 
(60)

CT images from 1535 
patients 

CNN AUC AUC for maxillary sinusitis: 88.0%, for ethmoid: 
78.0%, and for frontal: 71.0%. Multi-view 
model outperformed single view for maxillary 
sinusitis (p = 0.038)

Ramakrishnan et 
al., 2021 (61)

Ct images from 611 parti-
cipants

ML classifiers AUC, Sensitivity, Speci-
ficity

SVM: AUC 75.4%, highest sensitivity

Chen et al, 2021 
(62)

164 patients, 271 MRI 
features

ML classifiers AUC, Accuracy, Sensiti-
vity, Specificity

AUC: 100.0% (train), 96.5% (validation), 97.9% 
(test). Accuracy: 89.0%, Sensitivity:  88.0%, 
Specificity: 92.0%

Kuo et al., 2019 (63) 79 CT scan images BPNN Accuracy, Sensitivity Accuracy: 96.3%, Sensitivity: 95.1%

Humphries et al., 
2020 (64)

690 CT scans CNN Spearman correlation 
with LM scores

CNN scores and LM scores showed strong 
positive correlation (rho=0.82, p<0.001)

Kim et al, 2019 (65) 9000 Waters’ view 
radiographs from 60,389 
patients

CNN AUC, Sensitivity, Spe-
cificity, Cohen kappa 
coefficient

AUC: 93.0% for temporal test set, 88.0% for 
geographic test set; algorithm: superior AUC 
compared to radiologists

Murata et al., 
2018 (66)

Imaging of 400 healthy 
and 400 inflamed maxillary 
sinuses

CNN ROC, Accuracy, Sensiti-
vity, Specificity, AUC

Accuracy: 87.5%, Sensitivity: 86.7%, Specificity: 
88.3%, AUC: 87.5%. Performance comparable 
to radiologists, better than dental residents

Ramkumar et al., 
2017 (67)

MRI of 46 sinonasal tumor 
patients

ML classifiers Accuracy Accuracy (90.9% for training, 84.6% for vali-
dation), Neuroradiologists' review accuracy 
(56.5% for ROI, 73.9% for tumors, 87.0% for 
entire images)

Table 2 continued. Summary of all included studies.
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and segmentation in 10 studies (18.9%). Identification tasks 

were conducted in 6 studies (11.3%), treatment planning in 4 

studies (7.5%), and post-treatment course prediction in 3 studies 

(5.7%). Most studies (51, 96.2%) employed a supervised learning 

approach, while 1 study (1.9%) used a semi-supervised appro-

ach, and 1 study (1.9%) did not specify the learning approach. 

Data augmentation was applied in 22 studies (41.5%), whereas 

30 studies (56.6%) did not use augmentation, and 1 study (1.9%) 

did not specify its use. For validation, holdout validation was 

the most frequently used method, applied in 31 studies (58.5%), 

while 20 studies (37.7%) utilized cross-validation. Two studies 

(3.8%) did not specify the validation method. Among the most 

used metrics in AI performance evaluation were Area Under 

the Curve (AUC), accuracy, sensitivity, specificity, precision, and 

F1-score. 

Quality assessment

The studies included in the analysis had a mean quality assess-

ment score of 16.0 ± 2.6. The highest score achieved was 19, and 

the lowest was 8, showing a range of 11 points (8–19). Based 

on their scores, they were categorized into 5 groups: Group 1 

(scores 1–4), Group 2 (scores 5–8), Group 3 (scores 9–12), Group 

4 (scores 13–16), and Group 5 (scores 17–20). Group 1 included 

no studies, while Group 2 comprised one study with a score of 

8. Group 3 included 6 studies (mean score: 11.3 ± 0.8), Group 

4 consisted of 16 studies (mean score: 14.7 ± 0.9), and Group 

5 contained 30 studies (mean score: 17.8 ± 0.8). The results 

per group are shown in Figure 2, and the number of studies 

reporting each assessment item is provided in Table 1. Table 6 

displays the numerical evaluation score of each included study, 

along with its assigned group based on that score.

Discussion
Overview

In the era of automation and digitalization, this systematic 

review aims to evaluate advancements in the integration of AI 

tasks within the field of sinonasal radiological imaging. These 

advancements have the potential to enhance the quality and 

efficiency of patient care, leading to faster diagnoses, more ac-

curate treatment plans, and improved clinical outcomes. AI has 

already been successfully applied in various fields of otolaryn-

gology, including head and neck radiology. Although still in its 

early stages, AI has been trained on diverse imaging modali-

ties, such as CT, MRI, positron emission tomography CT (PET/

CT), ultrasound, and X-ray. Studies on head and neck imaging 

have demonstrated that AI can achieve high accuracy in lesion 

detection and classification, often outperforming traditional 

statistical methods and human experts (69). Emerging evidence 

also suggests that AI has successfully performed similar tasks 

in paranasal sinus radiology. Notably, the majority of studies 

included in our review (e.g. Sukswai et al. (34), Zeng et al. (35), Kim 

et al. (65), Murata et al. (66) and others) showed that, according 

to different evaluation metrics, the AI architecture performed 

strongly to exceptionally well, often yielding results comparable 

to, or even surpassing, those of clinicians. To assess AI’s ability to 

enhance patient care, the models in the included studies were 

evaluated using metrics such as AUC and accuracy, with a focus 

on clinical outcomes, including diagnostic accuracy, treatment 

Author, Year Dataset Type of AI Evaluation metrics Main outcomes

Altun et al., 2024 
(68)

CBCT from 307 patients YOLOv5x Recall, Precision, F1 
scores

Maxillary sinus segmentation: Recall: 100.0%, 
Precision: 98.5%, F1: 99.2%; Sinusitis: Recall: 
100.0%, Precision: 94.2%, F1: 97.0%

Abbreviations: AI = Artificial Intelligence; CT = Computed Tomography; DL = Deep Learning; mAP = mean Average Precision; AP50 = Average 

Precision at 50% IoU; IoU = Intersection over Union; VGG19 = Visual Geometry Group 19-layer model; Faster-RCNN = Faster Region-Based 

Convolutional Neural Network; FPN = Feature Pyramid Network; AUC = Area Under the Curve; ResNet = Residual Network; YOLO = You Only Look 

Once; CNN = Convolutional Neural Network; DenseNet = Densely Connected Networks; CRSwNP = Chronic Rhinosinusitis with Nasal Polyps; ROC = 

Receiver-Operating Characteristic curve; MRI = Magnetic Resonance Imaging; ML = Machine Learning; NPV = Negative Predictive Value; PPV = Positive 

Predictive Value; FESS = Functional Endoscopic Sinus Surgery; DSC = Dice Similarity Coefficient; N/S = Not Specified; CBCT = Cone Beam Computed 

Tomography; CRS = Chronic Rhinosinusitis; OMC = Ostiomeatal Complex; SNSCC = Sinonasal Squamous Cell Carcinoma; RS-DLR = Radiomics 

Signature-Deep Learning Radiomics; RS-DTL = Radiomics Signature-Deep Transfer Learning; RS-HC = Radiomics Signature-Hand-crafted features; 

AUPRC = Area Under Precision-Recall Curve; MIE = Multiple Instance Ensembling; CAE = Convolutional Autoencoder; CI = Confidence Interval; DC = 

Dice Coefficient; RFS = Recurrence-Free Survival; RS = Radiomics Score; T2WI = T2-Weighted Imaging; T1c = Contrast-enhanced T1-Weighted Imaging; 

ADC = Apparent Diffusion Coefficient; LR = Logistic Regression; Grad-CAM = Gradient-weighted Class Activation Mapping; SVM = Support Vector 

Machine; ROI = Region of Interest; GAN = Generative Adversarial Network; PNS = Paranasal Sinuses; PR = Panoramic Radiograph; PwCF = People with 

Cystic Fibrosis; SNOT-22 = SinoNasal Outcome Test; MioU = Mean Intersection over Union; FLS = Fast Level Set; CRF-FCN = Conditional Random Field - 

Fully Convolutional Network; BPNN = Back Propagation Neural Network; LM scores = Lund-MacKay scores.

Table 2 continued. Summary of all included studies.
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Table 3. Study design.

Abbreviations: N/S = Not Specified; AI = Artificial Intelligence.

N of studies
(n=53) (%)

Data 
collection

Retrospective
Prospective

45 (85.0)
8 (15.1)

Study centre 
involvement

Single-centre 
Multi-centre
N/S

36 (68.0)
13 (24.5)

4 (7.5)

Data source Internal database
Public database
Both internal and public databases
N/S

49 (92.5)
2 (3.8)
1 (1.9)
1 (1.9)

Performance 
Comparison

AI-to-AI
AI-to-human
Both AI-to-AI and AI-to-human
AI to traditional algorithmic methods
N/S

15 (28.3)
30 (56.6)

1 (1.9)
4 (7.5)
3 (5.7)

Table 4. Clinical approach.

N of studies
(n=53) (%)

Imaging 
modality

CT
MRI
PNS X-ray
Both CT and PNS X-ray

32 (60.4) 
15 (28.3)

3 (5.7)
3 (5.7)

Main condi-
tion or 
pathology 
of interest

CRSsNP
CRSwNP
eCRS
Sinus fungal ball rhinosinusitis
Maxillary sinusitis
Paranasal sinus mucosal abnormalities
Sphenoid sinus pneumatisation
Inverted papilloma & malignant lesions
Other abnormalities

9 (17.0)
4 (7.5)
2 (3.8)
3 (5.7)
5 (9.4)

7 (13.2)
1 (1.9)

13 (24.5)
9 (17.0)

Abbreviations: CT = Computed Tomography; MRI = Magnetic Resonance 

Imaging; PNS = Paranasal Sinuses; CRSsNP = Chronic Rhinosinusitis with-

out Nasal Polyps; CRSwNP = Chronic Rhinosinusitis with Nasal Polyps; 

eCRS = eosinophilic Chronic Rhinosinusitis.

Table 5. AI methodology.

N of studies
(n=53) (%)

AI architecture CNN
ANN
Other NN
Various DL algorithms
ML classifiers

39 (73.6)
1 (1.9)
1 (1.9)
2 (3.8) 

10 (18.9)

AI task Classification
Segmentation
Diagnosis
Identification
Treatment planning
Post-treatment course prediction

19 (35.8)
10 (18.9)
11 (20.8)
6 (11.3)
4 (7.5)
3 (5.7)

Learning 
approach

Supervised
Semi-supervised
N/S

51 (96.2)
1 (1.9)
1 (1.9)

Data 
augmentation

Yes
No
N/S

22 (41.5)
30 (56.6)

1 (1.9)

Validation Cross-validation
Holdout validation
N/S

20 (37.7)
31 (58.5)

2 (3.8)

Abbreviations: CNN = Convolutional Neural Network; ANN = Artificial 

Neural Network; NN = Neural Network; DL = Deep Learning; ML = 

Machine Learning; N/S = Not Specified

optimization, and patient prognosis prediction. This underscores 

AI’s potential as a valuable tool to support clinicians in patient 

management and in addressing complex clinical challenges. 

To the best of our knowledge, as of the date of our most recent 

literature search, no other systematic review has been published 

that specifically addresses paranasal sinus pathological entities 

while incorporating the most up-to-date literature.

Within the analysis of the 53 studies included in this review, the 

primary focus was on the scientific methodology of the articles. 

This was done to assess the robustness and reliability of their 

findings, ensuring that the conclusions drawn were based on va-

lid data and appropriate research techniques. A strong emphasis 

was placed on evaluating the quality of the included studies, as 

highlighting their strengths and weaknesses can guide future 

research directions. This process helps identify areas for impro-

vement, standardization, or the adoption of novel methods to 

enhance research quality. Ultimately, high-quality studies with 

well-defined methodologies are crucial for making evidence-

based recommendations, fostering progress in the field, and en-

suring that future advancements are built on solid foundations. 

Study design and potential sources of bias

Most of the included studies (85.0%) utilized a retrospective 

design, consistent with the trend in AI research, whereby large 

historical datasets are often leveraged for model development. 

Prospective studies (15.1%) represent a smaller but important 

subset of research, as they offer the potential for validation in 

real-world, forward-looking settings. The lack of prospective 

studies in the field may be due to a combination of factors, in-

cluding their cost, time commitment, logistical complexity, and 

ethical considerations, all of which make their implementation 

more challenging and difficult to set up. Bhattacharya et al. (20) 

published a large, prospective, long-term study that included 

2,619 participants. The authors used cross-validation to train 

their AI model and then applied it to a newly collected, unlabe-

led dataset (N=1,550) to test its generalizability. The prospective 

design, with data captured over an extended period, along with 
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Author, Year QA score Score Group 

Ramakrishnan et al., 2021 (61) 16 Group 4

Chen et al., 2021 (62) 16 Group 4

Kuo et al., 2019 (63) 11 Group 3

Humphries et al., 2020 (64) 17 Group 5

Kim et al., 2019 (65) 17 Group 5

Murata et al., 2018 (66) 15 Group 4

Ramkumar et al., 2017 (67) 18 Group 5

Altun et al., 2024 (68) 18 Group 5

the use of a large, diverse sample, further ensured the model’s 

robustness by evaluating its performance on data that reflects 

real-world conditions and evolving trends (20). Following a 

similar pattern, the 611-patient prospective multicenter study of 

Ramakrishnan et al. (61), who studied Chronic Rhinosinusitis (CRS) 

patients, offered a holistic approach by continuously monitoring 

variables such as nasal polyps, prior surgery, smoking history, 

and others. This approach allowed a clearer understanding of 

how these factors interact over time and assisted the ML model 

in identifying key predictors of olfactory loss (61).  Increasing the 

number of prospective studies would therefore help ensure that 

AI models can perform consistently across a variety of clinical 

settings (70). 

Notably, most of the studies (68.0%) were single-center. Multi-

center studies, which are crucial for validating AI models across 

diverse populations and clinical settings, accounted for only 

24.5% of the studies (71). The conduct of more large multi-center 

studies in the field of AI implementation in sinonasal patho-

logy will significantly enhance the generalizability of findings, 

minimize bias, and provide more robust data, making the results 

more applicable to real-world scenarios. Such multi-center trials 

also ensure consistency in procedures, data collection methods, 

and evaluations across different clinical centers (71). Regarding 

data sources, most studies (92.5%) relied on internal databases, 

which are often more readily available and tailored to specific 

clinical settings. The reliance on public databases was minimal 

(3.8%), indicating a potential area for future research to standar-

dize and share datasets for broader AI development (72). 

Published in 2024, the study by Cheong et al. (25) used the 

publicly available OASIS-3 MRI radiological dataset. The dataset 

is standardized and de-identified, making it machine-readable, 

and it includes expert consensus labels, ensuring high data qua-

lity. The broader use of such open databases enables researchers 

and developers to build upon them, improving AI tools and 

algorithms in medical imaging and enhancing the reproducibi-

Author, Year QA score Score Group 

Peng et al., 2024 (16) 19 Group 5

Zou et al., 2024 (17) 16 Group 4

Lai et al., 2024 (18) 14 Group 4

Kwon et al., 2024 (19) 14 Group 4

Bhattacharya et al., 2024 (20) 17 Group 5

Du et al., 2024 (21) 17 Group 5

Whangbo et al., 2024 (22) 18 Group 5

Wang et al., 2024 (23) 18 Group 5

Gudapati et al., 2024 (24) 13 Group 4

Cheong et al., 2024 (25) 18 Group 5

Maria Jesi et al., 2023 (26) 12 Group 3

Celebi et al., 2023 (27) 11 Group 3

Park et al., 2024 (28) 17 Group 5

Massey et al., 2024 (29) 14 Group 4

Lin et al., 2024 (30) 18 Group 5

Bhattacharya et al., 2023 (31) 18 Group 5

Xiong et al., 2024 (32) 14 Group 4 

Bhattacharya et al., 2024 (33) 19 Group 5

Sukswai et al., 2024 (34) 18 Group 5

Zeng et al., 2023 (35) 19 Group 5

Taylor et al., 2023 (36) 17 Group 5

Lin et al., 2023 (37) 17 Group 5

Ha et al., 2023 (38) 12 Group 3

Yoo et al., 2023 (39) 19 Group 5

He et al., 2023 (40) 14 Group 4

Zhou et al., 2022 (41) 17 Group 5

Hua et al., 2022 (42) 17 Group 5

Zhang et al., 2023 (43) 18 Group 5

Kim et al., 2023 (44) 14 Group 4

Sun et al., 2022 (45) 17 Group 5

Hung et al., 2022 (46) 17 Group 5

Kong et al., 2022 (47) 12 Group 3

Lim et al., 2022 (48) 15 Group 4

Morgan et al., 2022 (49) 19 Group 5

Liu et al., 2022 (50) 15 Group 4

Serindere et al., 2022 (51) 14 Group 4

Beswick et al., 2022 (52) 8 Group 2

Li et al., 2022 (53) 16 Group 4

Gu et al., 2022 (54) 17 Group 5

Corino et al., 2022 (55) 18 Group 5

Kuo et al., 2022 (56) 15 Group 4

Nakagawa et al., 2022 (57) 19 Group 5

Qi et al., 2021 (58) 10 Group 3

Jung et al., 2021 (59) 19 Group 5

Jeon et al., 2021 (60) 18 Group 5

Table 6. Numerical evaluation score of each study and score group.

Abbreviations: QA = Quality Assessment 
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lity of AI research (25). Only a small proportion of studies (5.7%) 

compared AI performance with traditional algorithmic methods, 

suggesting that most studies focused on AI-to-AI or AI-to-

human comparisons, which may limit the understanding of AI’s 

effectiveness and progress compared to traditional methods 

that are already widely implemented in clinical settings. 

AI approaches and areas for development

Regarding the AI methodology, Convolutional Neural Networks 

(CNNs) were the dominant AI architecture (73.6%), reflecting 

their success in image-related tasks, particularly in medical ima-

ging. AI-driven diagnosis has been the area of interest for many 

of the included studies, notably among those that were recently 

published (e.g. Peng et al. (16), Bhattacharya et al. (20), Sukswai et 

al. (34), Zeng et al. (35), Ha et al. (38), Kim et al. (44), Nakagawa et al. 
(57) and others). In most studies using CNNs, these models have 

outperformed traditional diagnostic methods, demonstrating 

their superiority in image recognition tasks (57). Moreover, as 

Figure 2. Quality assessment scores on a 20-point-scale, based on the 

CONSORT-AI extension. Categorization of studies into five groups based 

on their scores: Group 1 (scores 1–4, no studies), Group 2 (score 8, 1 

study), Group 3 (scores 9–12, 6 studies; mean score: 11.3 ± 0.8), Group 4 

(scores 13–16, 16 studies; mean score: 14.7 ± 0.9), and Group 5 (scores 

17–20, 30 studies; mean score: 17.8 ± 0.8). The interval bars represent 

the standard deviation (SD) of numeric scores for each group.

Based on their scores, they were categorized into 5 groups: Group 1 

(scores 1–4), Group 2 (scores 5–8), Group 3 (scores 9–12), Group 4 (scores 

13–16), and Group 5 (scores 17–20). Group 1 included no studies, while 

Group 2 comprised one study with a score of 8. Group 3 included 6 stud-

ies (mean score: 11.3 ± 0.8), Group 4 consisted of 16 studies (mean score: 

14.7 ± 0.9), and Group 5 contained 30 studies (mean score: 17.8 ± 0.8). 

The results per group are shown in Figure 2.

highlighted by Kim et al. (65), CNNs maintain a strong diagnostic 

performance across both geographic and temporal external test 

sets, further confirming their robustness and generalizability 

(65). Machine learning classifiers were used in 18.9% of studies, 

but deep learning methods appear to be the preferred approach 

due to their ability to automatically learn hierarchical features 

from complex image data (73). Classification was the most com-

mon AI task (35.8%), which is unsurprising given its importance 

in diagnosing various sinonasal conditions. Segmentation and 

diagnosis tasks were also prevalent (18.9% and 20.8%, respec-

tively), further illustrating the varied applications of AI in this 

field. However, tasks related to treatment planning and post-tre-

atment course prediction (5.7%) were less frequently explored, 

suggesting that AI’s role in treatment decisions and monitoring 

remains underdeveloped in sinonasal pathology. This may 

be attributed to the complexity of treatment planning, which 

often requires a combination of clinical judgment and multi-

disciplinary input, making it harder to model with AI compared 

to diagnostic tasks. Additionally, post-treatment monitoring 

involves long-term data collection and subtle changes that are 

challenging for AI to assess accurately, especially with inconsis-

tent follow-up.

Most studies (96.2%) employed supervised learning, which is 

typical in medical imaging where labeled datasets are necessary 

for training AI models. The use of semi-supervised learning or 

unspecified learning approaches was minimal, indicating that 

while supervised learning dominates, there is room for explora-

tion of alternative approaches. In 2022, Kuo et al. (56) contributed 

to this direction by demonstrating that their semi-supervised 

approach outperformed existing state-of-the-art models. To 

address inaccuracies in predictions on unlabeled data, they ap-

plied a confidence threshold as a filter. Additionally, their model 

was designed to handle noisy data more effectively than tradi-

tional supervised learning (56). Data augmentation was applied 

in 41.5% of studies, which is a standard technique to improve 

the robustness and generalizability of AI models, especially 

in medical imaging where dataset sizes are often limited (74). 

Validation methods were also diverse, with holdout validation 

being the most common (58.5%), followed by cross-validation 

(37.7%). The prevalence of holdout validation, which involves 

splitting the dataset into training and testing sets, highlights 

its simplicity and practical application in real-world clinical set-

tings. It is inferior however to the cross-validation, which “folds” 

the dataset multiple times and utilizes each subset both as a 

training and testing set during different iterations. As a result, 

cross-validation provides a more reliable estimate of the model’s 

performance by averaging evaluation results across several 

folds (75). Notably, the more validation folds there are, the clearer 

the picture of how well the model will perform on unseen data 

in real-world scenarios. 10-fold-cross validation, specifically, as 

used in the studies of Cheong et al. (25), Xiong et al. (32) and Gu et 

Corrected Proof



12

AI in sinonasal pathology detection

Rhinology Vol 63, No 4, August 2025

al. (54) is considered optimal for minimizing errors and improving 

performance, leading to a more generalized AI model (25). More-

over, while further research is needed to standardize data usage 

before integrating AI into real-time clinical workflows, training 

AI models with electronic health records (EHRs) holds great 

potential for real-time decision-making. This can be achieved by 

extracting, interpreting, and organizing large-scale patient data 

to enable more personalized treatment and diagnosis (76).

Research quality: current strengths and future challenges

The studies included in the analysis had a mean quality assess-

ment score of 16.0 ± 2.6. The results were grouped into 5 cate-

gories based on their quality scores, with most studies falling 

into the highest quality groups (Groups 4 and 5). Notably, Group 

5 contained a significantly larger number of studies compared 

to other groups, highlighting a strong trend towards higher-

quality research. This suggests that a substantial proportion of 

the studies have undergone rigorous methodological review, 

with an emphasis on transparency and robustness. The absence 

of studies in the lowest quality group (Group 1) is also a positive 

indicator, showing that most studies adhered to appropriate re-

search standards. Furthermore, the fact that most of the studies 

were published within the past 3 years (2022-2024) underscores 

a growing commitment to fundamental research standards. This 

suggests that a substantial proportion of the studies underwent 

rigorous methodological review, emphasizing transparency and 

robustness. 

While the included studies generally demonstrated strong 

adherence to reporting standards, several areas present oppor-

tunities for improvement. A notable gap is the handling of low-

quality or missing data, with only 43.4% of studies explaining 

how such data were evaluated and managed. Addressing this 

is crucial to ensure the reliability of results, and future studies 

should provide more detailed descriptions of their approach to 

data quality. Additionally, only 34.0% of studies justified their 

sample size, which is important for assessing the strength of 

their conclusions (77). Furthermore, only 56.6% of studies repor-

ted performance errors and how these were handled, sugges-

ting that the limitations of the automated algorithms used may 

not have been fully investigated. Among the various limitations 

reported in the studies, the most common were the inability to 

confirm the generalizability of the AI architecture (18, 33, 34, 42, 46, 54, 

56, 64), limited sample sizes (32, 35, 37, 50, 51, 60), and the heterogeneity 

of the data, which made categorization and handling more dif-

ficult (29, 57, 58).The generalizability of results was discussed in only 

50.9% of studies, highlighting the need for future research to 

focus more on how findings can be applied to broader clini-

cal and real-world settings (78). It is important to note that the 

variability in study design has made quality assessment of the 

research articles a challenging task. Given the need for high-

quality and valid data, it is essential that study design guidelines 

such as CONSORT-AI be adopted and implemented in all future 

AI-related studies (11).

Limitations and future directions

Although this systematic review offers valuable insights, it is 

important to address its limitations and highlight areas that 

require future research. First, the substantial variation in clinical 

focus, the diverse nature of pathologies examined, differences 

in study populations and inclusion/exclusion criteria, variability 

in imaging modalities, AI architectures, validation methods, AI 

tasks, and outcome measures all precluded the feasibility of 

conducting a meta-analysis. The heterogeneity of the data also 

prevented a thorough examination of interobserver variability, 

differences in the performance of various AI models (e.g., CNNs 

and other ML architectures), and performance variations across 

distinct imaging modalities (e.g., CT, MRI). Although several of 

the included studies included more than one human annotator 

for the AI training dataset, the specific impact of human anno-

tation variability on methodological transparency in AI training 

datasets is not directly addressed. Second, most studies were 

retrospective and single-center, which limits the generalizability 

and external validity of the findings. Third, there was no real-

world validation of AI models in clinical practice, which hampers 

their translation to everyday healthcare settings. Fourth, the 

absence of standardized datasets further limits the reproduci-

bility and comparability of AI models. Fifth, there is a need for 

standardized, publicly accessible sinonasal imaging datasets for 

training AI models to ensure consistency across studies. Sixth, 

multi-center and prospective studies are necessary to establish 

the population-wide and real-world clinical utility of AI. Seventh, 

AI strategies for long-term monitoring and treatment outcome 

prediction remain underexplored and should be investigated in 

future research. Additionally, while AI has shown great poten-

tial in classification and segmentation tasks, its role in treat-

ment planning and post-treatment course prediction remains 

underexplored and requires further investigation. Furthermore, 

some relevant literature may not have been captured in this 

review due to the exclusion of publications in languages other 

than English and conference papers. Lastly, studies with unclear 

or controversial data reporting may have been unintentionally 

misclassified. 

Conclusion
This systematic review highlights the innovations and overall 

progress of AI applications in the imaging of sinonasal patho-

logy. Currently, AI is being used primarily as a decision-support 

tool, assisting clinicians in identifying pathologies more accura-

tely and efficiently. For AI to be widely adopted in mainstream 

clinical practice, several steps must be taken, including rigorous 

validation of AI models to ensure their reliability and generali-
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zability across different clinical settings. Additionally, it is crucial 

that AI integration remains seamless and supportive, rather 

than replacing clinicians' expertise. While the potential for AI to 

improve diagnostic accuracy is significant, the current state of 

AI requires rigorous testing to validate its performance across 

various clinical environments. This, combined with universal 

adherence to study design guidelines, would improve the 

generalizability of AI models, and ultimately pave the way for 

higher-quality healthcare services. 
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