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Intranasal insulin – effects on the sense of smell*

Abstract
Intranasal insulin (IN) administration is a promising way to deliver the peptide to the central nervous system (CNS), bypassing the 

blood-brain-barrier and gastrointestinal absorption inhibition. IN receptors are localized in the olfactory mucosa and the brain, 

mainly in the olfactory bulb, hypothalamus, hippocampus, amygdala, cerebral cortex, and cerebellum. The pleiotropic mechanism 

of insulin action is characterized by its anti-inflammatory properties, antithrombotic, vasodilatory, and antiapoptotic effects. It pre-

vents energy failure and has regenerative properties, affects neuro-regeneration and counteracts insulin resistance. Hence, insulin 

has been suggested for various pathological states including neurocognitive disorders, obesity, and as a therapeutic option for 

smell loss.

A sharply increased prevalence of olfactory dysfunction was observed due to the COVID-19 pandemic. The pandemic also emp-

hasized the lack of therapeutic options for smell loss. Intranasal insulin administration has therefore been suggested to serve as 

potential treatment, influencing the regenerative capacities of the olfactory mucosa.

This narrative review summarizes current knowledge on possible effects of intranasal insulin on the sense of smell.
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Introduction
The sense of smell warns us of potential environmental dangers 

and it is important for social communication. It is significant for 

the choice of foods, influences the nutritional status, and energy 

homeostasis. Without a sense of smell, foods and drinks have no 

flavour (1,2).

The sense of smell decreases gradually with aging, and is 

compromised in various diseases, e.g., diabetes mellitus (DM), 

Alzheimer’s (AD) and Parkinson’s Disease (3–5). A sudden loss of 

the sense of smell is seen, for example, after head trauma or af-

ter viral infections of the upper respiratory tract. In SARS-CoV-2 

infection smell impairment occurs so often, that smell tests are 

used to screen for SARS-CoV-2 infections (6). The overall prevalen-

ce of a decreased olfactory function (resulting from infections, 

head traumas, sinonasal diseases, etc.) in the general population 

is approximately 20% (7,8).

Insulin (IN) receptors are present in the olfactory mucosa (OM) 

the tissue responsible for odour detection. It has been found 

that IN therapy facilitates the regeneration of olfactory sensory 

neurons (OSN) (9). Hence, IN has been listed among the potential 

approaches for treatment of smell impairment.

IN was discovered 1921 by Best and Banting (10). Since that time 

the hormone was of great interest to scientists mainly because 

of its use in diabetes therapy. As new research emerges, IN is in 

the spotlight again because of its actions in the central nervous 

system affecting cognitive functions, influencing neuropro-

tection and also having an impact on the sense of smell (11). IN 

receptors are mainly localized in the mitral cells of the olfactory 

bulb and various parts of the brain (3,12–14). They are also widely 

distributed in capillaries and small vessel walls influencing the 

regional perfusion (15). More recent research shows that IN acts 

not only in neurons but also astrocytes and other types of cells 

in the brain such as microglia, oligodendrocytes and tanycytes 
(16). Figure 1 shows selected areas of the central nervous system 

(CNS) where insulin receptors (IR) are found. Importantly, these 

areas are also significant for processing olfactory information.

First studies regarding IN focused on its action in peripheral 

tissues (mainly muscle, liver, and adipose tissue) (16). More recent 

studies focus on its central action stimulating smell function, ac-
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ting in Alzheimer’s disease and other neurocognitive disorders, 

even providing neuroprotection in acute ischemic stroke (15,17,18).

The subcutaneous (SC) way of IN administration is the traditi-

onal and most often used one. Nowadays new approaches to 

deliver IN are being made due to the various disadvantages of 

SC use and also new scientific data providing evidence that IN 

might be a therapeutic option in various pathologic conditions, 

for example, when administered directly to the CNS (19,20).

One of the more recent methods of IN delivery is the inhalation 

route. In 2006 the first product for inhalation was approved by 

the Food and Drug Administration, but later withdrawn from 

the market by the manufacturer due to low commercial interest. 

Still, there are other routes of IN administration taken into con-

sideration in clinical trials e.g. oral, oral colon delivery, buccal, 

intra-peritoneal, transdermal, and nasal administration (19).

 

Intranasal  delivery
The intranasal route of insulin administration was first pro-

posed by Frey, who started a series of proof of concept studies 

in animals, showing that intranasal IN administration allows 

the peptide to enter the brain without peripheral absorption 
(11). Studies in humans confirmed that after intranasal admi-

nistration, IN enters the brain without causing elevation of its 

peripheral concentration (11,21). The intranasal surface area for IN 

delivery is about 180 cm2. The peptide is physiologically secreted 

into the nasal mucus membrane, where IN-like growth factor 

(IGF) and IGF receptor 3 are present (22). Table 1 shows factors 

influencing intranasally administered IN absorption and possible 

consequences resulting from changes in the physiological status 
(12,22–24).

The main advantages of intranasal IN delivery relate to the 

bypassing of gastrointestinal absorption inhibition and the 

blood-brain barrier (BBB). This enables blood glucose regulation 

and activation of IN feedback mechanisms directly in the central 

nervous system (22,25,26).

In his review, Benedict et al. showed that intranasal IN delivery 

can be a promising alternative for the intravenous route of ad-

ministration, leading to better patient outcomes and avoidance 

of peripheral side effects connected with that kind of drug admi-

nistration, especially hypoglycaemia resulting from high doses 

which would be needed to achieve proper IN concentrations in 

the CNS (27).

Although the intranasal application route is thought to be a safe 

way of IN administration, various authors state that progress has 

to be made to overcome adverse drug reactions related to this 

administration type, such as nasal irritation (nasal burning, pain, 

epistaxis) or respiratory symptoms (cough, sinus pain/irritation, 

coryza) (11,28,29). A new approach to overcome this problem is the 

use of fast dissolving films enabling accurate dosing, rapid IN 

release, and better application properties (30). 

Some studies showed that immediate intranasal administration 

of IN enhances blood pressure. This effect vanishes with prolon-

ged intranasal administration, which allows the use of intranasal 

IN in longer (8 weeks) therapies without a significant increase of 

blood pressure (31). Importantly, the elevation of blood pressure 

as a result of intranasal administration of IN does not exceed 

normal ranges (32).

Intranasal IN – potential therapeutic use
Several reviews indicate that intranasal IN may be beneficial to 

patients undergoing acute ischemic stroke (15,33). In this context, 

intranasal IN has specific neuroprotective qualities including 

a pleiotropic mechanism of action and a rapid administration 

route enabling selective cerebral delivery (33).

Olfactory bulb

Hypothalamus

Hippocampus

Amygdala

Cerebral cortex

Cerebellum

Capillaries and 
small vessel walls

Highest density of IN receptors

Lowest density of IN receptors

Figure 1. Presence of insulin receptors in the central nervous system.



406

Sienkiewicz-Oleszkiewicz et al.

The pleiotropic mechanism of IN action characterized by its 

anti-inflammatory properties, antithrombotic and vasodilatory 

effects, antiapoptotic effect, prevention of energy failure and 

regenerative properties may be used not only in stroke treat-

ment, but also in neurocognitive impairment therapies, obesity 

treatment and in acute smell loss management. Molecular 

mechanisms behind the listed effects are presented in Table 2 
(15,34–45). 

High density of IN receptors can be found in the hippocampus 

which is mainly involved in memory organization and cognition 
(12). Positron emission tomography images provided evidence 

that changes in brain glucose metabolism may trigger cognition 

impairments (46). Numerous studies provided evidence that ele-

vation of IN concentration in the CNS leads to memory impro-

vement in various pathological conditions such as Alzheimer’s 

disease (17,47,48), Parkinson’s disease (4), Down Syndrome (32), and 

cognition impairment linked to obesity and DM type 2 (49,50). 

In 2021 a narrative review highlighted the potentially beneficial 

role of intranasal IN administration for prevention of delayed 

neurocognitive recovery and postoperative neurocognitive dis-

order often reported after hospitalization and connected with 

anaesthesia, predominantly in cardiac surgery (51). 

Brünner et al. found that intranasal IN administration impro-

ves the delayed odour-cued reactivation of spatial memory 

in young men. During the study participants were exposed to 

eight food and non-food odorants. The effect was independent 

of odour type, and the intranasal IN administration caused no 

adverse reactions. The authors hypothesized that the use of 

odours may help maximize the memory-enhancing properties 

of intranasal IN in cognitively impaired humans (52).

In 2004 Hallschmid et al. demonstrated that 8 weeks-long 

intranasal IN administration (4 x 40 IU/day) to healthy volunteers 

leads to weight loss and adiposity reduction in men but not in 

women, suggesting a sex dependency of IN catabolic effect. The 

investigation gave a promising approach to the therapeutic use 

of intranasal IN in obesity treatment (53). Later Hallschmid et al. 

demonstrated in a study with 30 healthy women that postpran-

dially administered intranasal IN enhances the satiating effect of 

meals and reduces palatable snack intake. Taking into conside-

ration that women are less susceptible to the anorexic effect of 

IN, the authors hypothesized that the effect could be similar in 

obese patients, representing general brain IN resistance (54).

In line with these conclusions, a study published in 2020 

examined sensitivity to a food and a non-food odorant in the 

hungry and sated state in 75 young healthy (26 normal weight, 

25 overweight, and 24 obese) participants. A negative indirect 

effect of BMI on odour sensitivity for chocolate mediated by 

the IN resistance was observed (50), corroborating Hallschmid’s 

hypothesis (54). Furthermore, Rodriguez-Raecke et al. provided 

evidence that in healthy male subjects gustatory sensitivity was 

boosted by single dose intranasal IN (40 IU) application. This 

may also impact food intake, as the detection of the sweet taste 

Table 1. Factors influencing absorption and bioavailability of 

intranasally administered insulin.

Factor Change in 
physiological status

Consequence

Blood flow Vasoconstriction  absorption

Mucus  Viscosity 
pH between 5-6,5 
 mucus production 
 ciliary beat frequency

 absorption
 absorption
 absorption
 absorption

Mucociliary membrane  permeability  bioavailability

Enzymes (cytochrome 
P-450 enzymes, 
proteases, peptidases)

Possible drug 
degradation 

 bioavailability

Macrophages and 
other immune 
competent cells

 presence  bioavailability

Microbes  presence  bioavailability

Xenobiotics  presence  bioavailability

Table 2. Molecular mechanisms behind pleiotropic effects of intranasally administered insulin.

Anti-
inflam-
matory 

properties

Antithrombotic 
and vasodilatory 

effects

Antiapoptotic effect Prevention of energy failure Regenerative 
Properties

MMP-9
VEGF
TF
PAI-1

TF
PAI-1
ROS
eNOS
PI-3K/Akt 
signalling pathway

PI-3K/Akt signalling 
pathway
GSK-3β signalling 
pathway

cerebral glucose metabolism
neuronal norepinephrine uptake

neurite outgrowth
regeneration of small myelinated fibres
survival of sympathetic and sensory neurons
neurotransmission
perfusion
resting state functional connectivity of the brain

MMP-9: matrix metallopeptidase 9; VEGF: vascular endothelial growth factor; TF: tissue factor; PAI-1: plasminogen activator inhibi-

tor-1; ROS: reactive oxygen species; eNOS: endothelial nitric oxide synthase; PI-3K/Akt: phosphoinositide 3-kinases; GSK-3β: glycogen 

synthase kinase 3 beta.
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was mostly enhanced and the bitter taste less enhanced (55).

The aforementioned studies suggest that intranasal IN applica-

tion can be a potential therapeutic option in obesity treatment 

counteracting IN resistance and contributing to the restoration 

of chemosensory perception in overweight patients. Another 

potential target for intranasal IN use is the treatment of acute 

smell loss, where the smell-restoring effect may result from 

enhanced regeneration and maturation of OSN after direct IN 

application to the olfactory epithelium (9,15,56,57).

Intranasal IN and normosmia
In 2011 Ketterer et al. aimed to determine whether IN is involved 

in the regulation of olfactory function. Odour thresholds were 

measured in 14 healthy subjects eight of which underwent a 

hyperinsulinemic–euglycemic clamp. In the intervention group, 

a decrease in odour threshold was observed during euglyce-

mic hyperinsulinemia. In the control group, no such effect was 

observed after 2h of fasting, indicating that IN regulates the 

satiation process by reduction of smelling capacity, which is a 

regulator of food intake (58). However, the methodology of this 

study was invasive and therefore may have led to some biases 

caused by elevated cortisol levels and altered brain function (29).

Since then, several studies were performed to determine the 

influence of IN on the sense of smell and the possibilities of in-

tranasal IN application, at the same time addressing the caveats 

of the first study on the effects of intranasal IN administration on 

olfactory performance.

In a double-blind, placebo-controlled, balanced within-subject 

study with 17 normal-weight normosmic participants (7 wo-

men) Brünner et al. demonstrated that after a single dose of 

intranasally administered IN (40 IU) the sensitivity for n-butanol 

decreased significantly, whereas olfactory discrimination ability 

did not change. After intranasal IN administration neither serum 

IN nor serum cortisol concentrations were altered. However, a 

small but significant drop in plasma glucose levels was ob-

served, but it was not related to the effects of intranasal IN on 

olfactory sensitivity (29). 

While these studies in healthy subjects suggested that intranasal 

IN decreases olfactory sensitivity, results concerning olfactory 

sensitivity in healthy volunteers according to the gender speci-

ficity (similarly to those observed for gustatory sensitivity) are 

ambiguous. Rodriguez-Raecke et al. demonstrated in a double-

blind, placebo-controlled, balanced within-subject study with 

30 normal-weight normosmic participants (14 females), that the 

olfactory sensitivity for n-butanol was lower after intranasal IN 

administration in women but not in men, as compared to the 

placebo group. The study was also the first one extending the 

measures of olfactory sensitivity by utilizing food-related peanut 

odour, that revealed no significant effects of IN administration 
(59).

Intranasal IN and olfactory disorders
In 2015 Schöpf et al. performed a study among patients with 

olfactory deficits. Ten anosmic patients received 40 IU of intrana-

sal IN. The study generated different observations than previ-

ous ones, performed among healthy volunteers. Two patients 

presented an immediate increase in odour sensitivity. Odour 

intensity ratings also increased in a significant manner. Patients 

with high body mass index (BMI) scores better identified odours 

immediately after intranasal IN application. Although the obser-

vations were the first of their kind, and provided a positive input 

for further investigations, the study had limitations in terms of 

the small sample size, lack of randomization and relatively nar-

row BMI range (3).

In 2018 Rezaeian performed a double-blind randomized 

controlled clinical trial among 38 hyposmic patients aiming 

to evaluate the effect of intranasal IN (40 IU) administration 

on olfactory recovery. After 4 months follow up there was a 

significant improvement in the n-butanol threshold test in the 

intervention group, compared to the placebo group. No adverse 

drug reactions of intranasal IN were observed during the study. 

The authors therefore suggested intranasal IN administration for 

the therapeutic management of olfactory dysfunctions (60). The 

study also suffered from a the relatively small sample size and 

the lack of reference to BMI values. The latter being an important 

omission as obesity has been shown to reduce the sensitivity to 

odours via IN resistance (50).

Thanarajah et al. performed an investigation to determine the 

role of peripheral IN sensitivity, reactive blood IN changes and 

intranasal IN application on olfactory performance in 36 male 

normal weight and overweight participants. Three different IN 

doses (40 IU, 100 IU, 160 IU) or corresponding placebo volumes 

were administered during the test period to each participant. 

Olfactory threshold and odour discrimination tests were per-

formed and correlated with the homeostasis model assessment 

of IN resistance. The investigation revealed enhanced odour 

perception with a dose-dependent improvement of olfactory 

thresholds after intranasal IN administration, giving more evi-

dence on favourable effects of intranasal IN use in the treatment 

of olfactory dysfunction. Blood IN and intranasal IN intervention 

dose influenced olfactory threshold. Higher systemic IN levels 

correlated negatively with olfactory performance, while higher 

intranasal IN doses correlated positively with odour sensitivity. 

The study also showed that it is important to control the fasting 

state, blood IN levels and peripheral IN sensitivity during intra-

nasal IN testing (18). Notably, those variables except for blood IN 

levels were not taken into consideration in previously menti-

oned studies. 

Figure 2 summarizes differences in intranasally administered IN 

action between healthy individuals and patients with olfactory 

loss (9,58).
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Issues related to studies on insulin effects in olfac-
tory dysfunction
The relatively short intervention time and lack of long-term 

observations of intranasal IN administration consequences on 

smell deterioration are among factors limiting the conclusions 

based on the existing empirical evidence. An additional limitati-

on relates to the relatively short follow-up period which in most 

studies did not take longer than a year, limiting our knowledge 

on possible long-term and dose related adverse drug reactions 

after intranasal IN administration. Most studies were performed 

using between 20 and 160 IU of insulin during a relatively short 

period of time (11). 

Keeping in mind antiapoptotic effects of insulin action the as-

sumption of potential cancer inducing effects after long-term 

therapies, may be raised, as the cancer inducing effect of chronic 

hyperinsulinemia was shown for patients presenting with insulin 

resistance (61). To our knowledge no studies on the potential 

cancer inducing effect of intranasally administered IN were 

performed to date. In general intranasal insulin administration 

was found to be safe and well tolerated. After intranasal admi-

nistration, the peptide was found to inhibit the mitochondrial 

apoptotic pathway, mainly in mature OSN (62). Therefore it seems 

not to be very likely that olfactory dysfunction treatment with 

intranasally administered insulin may induce cancer, although 

studies with long-term observations are needed to confirm this 

assumption.

A novel approach to the use of intranasal IN could potentially 

be related to hyposmia and anosmia caused by the COVID-19 

virus. The prevalence of olfactory dysfunction during COVID-19 

infection with the delta variant is approximately 40%, varying 

between different populations and virus strains (63). Although 

most patients recover from smell loss within 1-3 weeks, some 

remain hyposmic or anosmic for months or years (64). It is hypo-

thesized that in those patients larger areas of sensory epithelium 

are affected, possibly with a larger number of lost OSN (6,65,66). 

This group of patients would potentially benefit the most from 

intranasal IN delivery because IN receptors are also located in 

sustentacular cells. As stated before IN promotes OM regene-

ration through the enhancement of newly generated OSN ma-

turation and potentiation of their electrical activity (9,56). It is not 

certain whether globose basal cells express insulin receptors. 

A study performed by Lacroix et al. confirmed IR in horizontal 

cells but failed to identify them in globose basal cells due to an 

aspecific signal during Western blot analysis (57). According to 

Leung at al. and Schwob at al. horizontal basal cells are mainly 

responsible for the regeneration of  the olfactory epithelium 

after severe injury (67,68). In line with this finding stands a study 

performed by Kikuta et al., demonstrating that higher concen-

trations of insulin in nasal mucus correlated with preservation 

of larger amounts of OSN, and indicating a potential protective 

role of the peptide against olfactory epithelial damage (69). On 

the other hand it has to be kept in mind that globose basal cells 

also play an important role in the regeneration of olfactory epi-

thelium. Further studies are needed to determine whether IR are 

present in those cells, because only the activation of horizontal 

and globose basal cells will allow a complete regeneration of 

strongly damaged olfactory epithelium. 

A recent study aimed to formulate fast dissolving intranasal IN 

films for the management of COVID-19 associated anosmia. The 

investigation contained two phases. In the first step films with 

different composition of hydroxypropyl methyl cellulose and 

poly vinyl alcohol were prepared and investigated for in vitro 

characterizations. In the second step a clinical evaluation was 

performed in 49 participants with post-COVID olfactory loss. The 

Figure 2. Differences between healthy individuals and patients with olfactory loss in terms of intranasally administered insulin action.
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study was conducted in a single-blinded randomized parallel 

design. The intervention group received 100 IU IN in the form of 

a fast-dissolving film twice weekly for four weeks. The placebo 

group received IN-free films. Thirty minutes after the interven-

tion a significant improvement in olfactory sensitivity and odour 

discrimination scores in the intervention group was detected 
(30). These results suggest that intranasal IN administration is 

a promising approach for the treatment of COVID-19-related 

olfactory loss.

As previously explained insulin may be extracellularly transfer-

red by OSN to the olfactory bulb, which presents high amounts 

of insulin receptors (69). Taking into consideration that lower sen-

sory input may lead to atrophy of the OB, intranasal insulin also 

presents a promising approach to treat the shrunken olfactory 

bulb in a dual mechanism. First, it protects the olfactory epithe-

lium from injury related OSN loss, what may further preserve a 

sufficient sensory input. In the second mechanism intranasally 

administered insulin might support the formation of stable 

neural circuits by inhibition of OB neuron apoptosis (69,70). Studies 

on this topic are needed. 

Another field for further investigations are the potential changes 

of insulin transport to the brain after intranasal application in 

patients with olfactory dysfunction.  Insulin is mainly trans-

ported by the extra-neuronal pathway and, as shown in rats, 

possibly also through the trigeminal nerves (11,71–73). There are 

three main mechanisms leading to olfactory loss according to 

anatomical location of lesion; conductive dysfunction, sensori-

neural dysfunction, and central dysfunction – these mechanisms 

are often linked with each other. In fact, pathological conditions 

often show a combination of different mechanisms. Therefore 

each pathologic condition with a sensorineural dysfunction, 

including chronic rhinosinusitis, post-infectious olfactory 

dysfunction, posttraumatic olfactory dysfunction, and toxin or 

medication induced olfactory dysfunction, might potentially 

change the transport of insulin to the brain after intranasal 

application (74). This may impact the treatment outcome of the-

rapies demanding sufficient insulin concentrations in the CNS 

after intranasal administration.

 

Conclusion
Current research indicates that intranasal IN delivery may be 

a potential therapeutic option in various pathological states. 

Nasal administration seems to have no adverse effects. Special 

attention should be paid to the use of intranasal IN in cases of 

hyposmia, anosmia, and especially in terms of the COVID-asso-

ciated olfactory loss. The mechanisms behind immediate smell 

improvement and observation of the long-term consequences 

of intranasal IN use are fields for further investigations. On the 

other hand, optimization of intranasal IN administration devices 

are needed, as there are problems with studies execution and 

results interpretation for example due to inaccurate dosing (13,75).
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