Clinical predictors of polyps recurring in patients with chronic rhinosinusitis and nasal polyps: a systematic review and meta-analysis*

Do Hyun Kim¹, Jae Sang Han¹, Geun-Jeon Kim¹, Mohammed Abdullah Basurrah², Se Hwan Hwang³

¹ Department of Otolaryngology-Head and Neck Surgery, Seoul Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

² Department of Surgery, College of Medicine, Taif University, Taif, Saudi Arabia

³ Department of Otolaryngology-Head and Neck Surgery, Bucheon Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea **Rhinology 61: 6,** 482 - 497, 2023 https://doi.org/10.4193/Rhin23.136

*Received for publication: April 22, 2023 Accepted: July 5, 2023

Abstract

Background: Identification of perioperative risk factors for recurrent nasal polyps (RNPs) is important for selection of further treatment and determination of appropriate follow-up period. However, the relative prognostic significance of these risk factors has not been investigated.

Methodology: We compared the nasal symptoms, endoscopic polyp and Lund-Mackey computed tomography scores, and the laboratory and pathological findings of RNP and non-RNP patients. The risk of bias was assessed using the Newcastle-Ottawa scale.

Results: Patients with poor nasal symptom scores and olfactory dysfunctions and high Lund-Mackey computed tomography scores were at higher risk of postoperative RNPs, as were those with allergic conditions and elevated tissue and serum eosinophil levels. The tissue neutrophil counts/percentages were significantly lower in the RNP than the other group. The tissue eosinophil level was of higher diagnostic utility than the serum eosinophil level. The RNP diagnostic odds ratio afforded by the tissue eosinophil count or percentage was 54.1247. The area under the receiver operating characteristic curve was 0.936. The sensitivity and specificity were 0.8809 and 0.8834, respectively.

Conclusion: The tissue eosinophil level reliably predicts RNP after endoscopic sinus surgery.

Key words: eosinophils, sinusitis, hypersensitivity, nasal polyps, recurrence

Introduction

Chronic rhinosinusitis (CRS) imposes significant socioeconomic burdens worldwide, affecting 5 to 15% of all subjects in the United States and Europe^(1, 2). In the United States, the healthcare costs range from \$6.9 to \$9.9 billion a year⁽³⁾. Clinically, CRS is divided into CRS with nasal polyps (CRSwNP) and CRS without nasal polyps (CRScNP)⁽¹⁾. Over the past several years, several patient-specific treatments have been proposed⁽⁴⁾. However, in many countries, it remains difficult to use cytokine levels to customize CRSwNP patient treatment; this is not cost-effective. Various protocols suggest that, regardless of the endotype, endoscopic sinus surgery (ESS) should be considered for patients who do not improve even after maximal medical treatment^(1, 2). ESS physically removes nasal polyps, ensures sinus ventilation, and restores mucociliary drainage⁽¹⁾. For recalcitrant CRSwNP, ESS is still considered the gold standard^(1, 2). However, despite the initial improvements, the polyp recurrence rate can attain 60%, and 15-20% of patients require revision surgery⁽⁵⁾. As a result, studies on recurrent nasal polyps (RNPs) after ESS have been conducted. Sinonasal tissue or blood eosinophilia, eosinophil cationic protein, preoperative Lund-Mackey computed tomography (CT) scores, and presence of comorbid asthma have been reported as predictors for recurrence risk⁽⁶⁻¹⁰⁾. Nevertheless, the investigation of the relative prognostic significance of these

factors has not been adequately undertaken. Identification of perioperative risk factors for RNPs would greatly aid selection of further treatments and the choice of appropriate follow-up periods. Therefore, in this meta-analysis, we identify clinical predictors of postoperative RNPs in CRSwNP patients and evaluate the diagnostic utilities of independently associated factors.

Materials and methods

Study protocol and registration

This systematic review and meta-analysis adhered to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses⁽¹¹⁾. The protocol was prospectively registered in the Open Science Framework (<u>https://osf.io/gq7hu/</u>).

Literature search

We searched the PubMed, SCOPUS, Embase, Web of Science, and Cochrane Central Register of Controlled Trials databases to February 2023. The Mesh terms were: Nasal Polyps, Rhinitis, Sinusitis, Chronic Disease, and Recurrence. The details are shown in Supplementary Table 1. Two authors (JSH and GK) independently reviewed and selected studies via review of titles, abstracts, and texts; any disagreement was resolved via discussion with a third reviewer (MAB).

Selection criteria

The subjects included patients with CRSwNPs that recurred after surgery and who then underwent clinical, laboratory, pathological, or imaging evaluation. Case reports, review articles, those evaluating other nasal diseases, non-English-language articles, and reports lacking data that allowed of statistical analysis, were excluded. We compared the clinical, laboratory, pathological, and imaging data of RNP and non-RNP groups and present standardized mean differences (SMDs) or odds ratios (ORs). The selection strategy is summarized in Figure 1.

Data organization and quality assessment

We used a standard form⁽¹²⁻¹⁴⁾ to record patient number, gender, nationality, the tests used to evaluate RNP status, and comorbidities. The p-values of differences between the outcomes of RNP and non-RNP patients were calculated. We compared the percentages and absolute numbers of tissue and serum eosinophils; endoscopic polyp and nasal symptom scores; olfactory function; Lund-Mackey CT scores; and allergic rhinitis, asthma, eosinophilic CRS, aspirin-intolerance, and tissue and serum eosinophilia status^(7, 9, 15-45). Diagnostic accuracy, sensitivity, specificity, and the diagnostic odds ratio (DOR) were calculated; summary receiver operating characteristic (SROC) curves were drawn and areas under the curves (AUCs) calculated; these yielded the true-positive, true-negative, false-positive, and falsenegative values. The risk of bias was assessed using the Newcastle-Ottawa scale. The Newcastle-Ottawa Scale is a validated

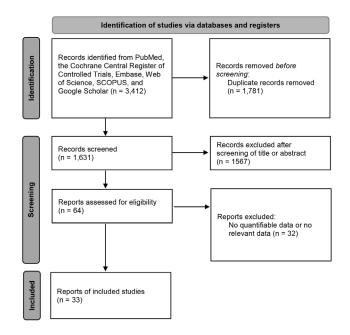


Figure 1. Flow diagram of article selection.

instrument comprising 8 items distributed across three domains, namely selection, comparability, and outcome. This scale was employed to evaluate the quality of the studies incorporated in the analysis. Each item, except for comparability, carries a single point, whereas comparability has the potential to contribute up to two points. Consequently, the total score ranges from 0 to 9, whereby studies are categorized as poor quality if they score between 0 and 2, fair quality if they score between 3 and 5, and good/high quality if they score between 6 and 9⁽⁴⁶⁾.

Statistical analyses

R ver. 4.2.2 (R Foundation for Statistical Computing, Vienna, Austria) was used for all analyses. For continuous variables, the data are the standard mean differences (SMDs). As no standardized methods for evaluation of the eosinophil or neutrophil percentages or absolute counts, the CT score, subjective olfactory dysfunction, or the endoscopic NP or nasal symptom scores are yet available, effect sizes were calculated using the SMDs. Other variables were compared using the odds ratios (ORs) of outcome incidences. The DORs were the (true-positive/false-positive)/ (false-negative/true-negative) ratios calculated using a randomeffects model and are presented with 95% confidence intervals (CIs). DOR values range from 0 to infinity; higher values indicate better diagnostic performance. A value of 1 is neutral in terms of disease presence/absence; values from 0 to 1 indicate that diagnostic performance is poor. A better SROC curve approaches the upper left corner where the sensitivity and specificity are both 100% (thus 1), indicating optimal diagnostic power. The AUC, thus the area under the SROC curve, ranges from 0 to 1. The closer the AUC to 1, the better the diagnostic utility.

The I² test was used to assess heterogeneity. This examines among-study variability. The I² score ranges from 0 to 100; higher values indicate more heterogeneity. If significant heterogeneity was evident (I² > 50), the meta-analysis employed the DerSimonian-Laird random-effects model. Otherwise (I² < 50), a fixed-effects model was used. All p-values are two-tailed. We performed sensitivity analyses to evaluate the effects of individual studies on the overall results. The funnel plot and the Egger test were used to detect publication bias. If such bias was suspected, the funnel plot asymmetry was corrected and confirmed employing the trim-and-fill method. In addition, a metaregression analysis was performed to examine the potential association between the follow-up periods and the laboratory, clinical, and pathological features, as well as the underlying comorbidities, in the recurrent CRSwNP. If such an association was observed, a subgroup analysis was subsequently conducted.

Results

A total of 4,516 patients enrolled in 33 studies were finally included. The study characteristics and bias assessments are

Figure 2A

C ZA												
Study	Total	Exp Mean	erimental SD	Total	Mean	Control SD	Standardised Mean Difference	SMD	95%-CI		Weight (random)	
g1 = count							6					
Matsuwaki 2008	9	577.80	113.5000	47	269.70	40.9000	÷	5.26	[4.02; 6.50]	0.2%	1.5%	
Brescia 2015	24	0.33	0.1800	155	0.27	0.1900	ę	0.32	[-0.11; 0.75]	1.8%	2.1%	
Brescia 2015	24	0.33	0.1800	155	0.27	0.1900	÷.	0.32	[-0.11; 0.75]	1.8%	2.1%	
Yenigun 2015	80	6.60	0.9000	78	5.50	1.0000	بوداد المراجع	1.15	[0.81; 1.49]	2.9%	2.1%	
Brescia 2017	57	0.47	0.5200	223	0.28	0.2000	6	0.64	[0.35; 0.94]	3.8%	2.1%	
Lee 2017	16	0.35	0.1900	20	0.21	0.3200	<u>1</u>	0.51	[-0.16; 1.18]	0.7%	1.9%	
Meng 2019	118	0.50	1.3000	112	0.40	2.2000	e el	0.06	[-0.20; 0.31]	4.9%	2.2%	
Mortuaire 2020			574.0000			180.0000	Ť.	0.04	[-0.72; 0.79]	0.6%	1.9%	
Nakamaru 2020	23 45	0.38	288.4000 0.2500	46 87	327.50 0.40	432.8000	<u>, K</u>	0.57	[0.06; 1.08]	1.3% 2.5%	2.0% 2.1%	
Salvador 2020 Gan 2021	40	0.30	0.2300	65	0.40	0.3100 0.1480	<u>a</u>	-0.07 0.51	[-0.43; 0.29] [-0.11; 1.13]	0.9%	2.1%	
Lu 2021	9		131.8000			118.0100	1	-0.58	[-1.30; 0.14]	0.6%	1.9%	
Peng 2021	_		103.3000			112.6000	E.	0.41	[0.20; 0.62]	7.6%	2.2%	
Wen 2021	40	0.40	0.1000	80	0.30	0.1000	(a	0.99	[0.59; 1.39]	2.1%	2.1%	
Chen 2022	38	0.40	0.3110	95	0.19	0.1630		0.97	[0.58; 1.36]	2.1%	2.1%	
Chen 2022	33	0.42	0.2660	77	0.18	0.1700		1.17	[0.74; 1.61]	1.7%	2.1%	
Deng 2022	24	200.00	120.0000	36	100.00	100.0000	÷	0.91	[0.37; 1.45]	1.1%	2.0%	
Wang 2022	36	0.30	0.1000	36	0.20	0.1000	2	0.99	[0.50; 1.48]	1.4%	2.1%	
Wang 2022	60	0.30	0.1000	60	0.20	0.1000		0.99	[0.61; 1.37]	2.3%	2.1%	
Wang 2022	34		144.8480			103.6320	ģ	0.19	[-0.23; 0.60]	1.9%	2.1%	
Wang 2022	34	0.30	0.1000	35	0.30	0.1000	ų.	0.00	[-0.47; 0.47]	1.5%	2.1%	
Yu 2022	54		265.3000			173.0000	12 15	0.64	[0.32; 0.95]	3.3%	2.1%	
Zhang 2022	32	0.30	0.1000	78	0.30	0.1000	9	0.00	[-0.41; 0.41]	2.0%	2.1%	
Zhang 2022	35		108.9000			119.0000	Ĕ.	0.21	[-0.18; 0.60]	2.2%	2.1%	
Zhang 2022	40	0.30	0.1000	40	0.20	0.1000	5	0.99	[0.52; 1.46]	1.5%	2.1%	
Fixed effect model Random effects model	1027			2173				0.52	[0.45; 0.60]	52.7%	 51.1%	
Heterogeneity: $I^2 = 85\%$, τ	0	16 0 < 0	0.01				1	0.00	[0.39; 0.81]		51.170	
Helefogeneity. 7 – 65%, t	- 0.23	10, p < 0										
g1 = percentage												
Brescia 2015	24	4.92	2.8000	155	3.97	2.5300	ę	0.37	[-0.06; 0.80]	1.8%	2.1%	
Brescia 2015	24	4.92	2.8000	155	3.97	2.5300			[-0.06; 0.80]	1.8%	2.1%	
Lou 2015	173	4.00	0.2000	214	7.80	0.2000 -	-		-20.32; -17.61]	0.2%	1.4%	
Nakayama 2016	5	6.80	4.4000	19	8.40	6.4000		-0.25	[-1.24; 0.73]	0.3%	1.7%	
Nakayama 2016	12	6.80	3.6000	19	8.40	6.4000	1	-0.28	[-1.01; 0.44]	0.6%	1.9%	
Brescia 2017	57	6.20 7.40	4.8000	223 112	4.20	2.9600	14	0.58	[0.29; 0.88]	3.8%	2.1% 2.2%	
Meng 2019 Du 2020	118 28	8.06	3.3000 4.9660	68	6.60 4.90	4.0000 3.6300	þ.,	0.22 0.77	[-0.04; 0.48] [0.32; 1.23]	4.9% 1.6%	2.2%	
Qi 2020	20	6.96	3.0300	26	3.69	2.4200	3	1.18	[0.52, 1.23]	0.9%	2.1%	
Wu 2020	16	4.88	3.2000	64	3.06	3.0100	1	0.59	[0.04; 1.15]	1.1%	2.0%	
Wang 2021	169	8.70	2.2000	144	4.90	2.4000		1.65	[1.39; 1.91]	5.0%	2.2%	
Wen 2021	40	4.20	1.2000	80	2.90	1.0000	1	1.21	[0.80; 1.62]	2.0%	2.1%	
Wu 2021	68	6.25	3,3950	40	3.35	2.9130		0.89	[0.48; 1.30]	2.0%	2.1%	
Chen 2022	38	5.51	5.3960	95	3.14	2.6310	ģ.	0.65	[0.26; 1.03]	2.2%	2.1%	
Chen 2022	33	6.00	3.9280	77	2.50	3.0760	5	1.04	[0.61; 1.47]	1.8%	2.1%	
Deng 2022	24	3.00	1.0000	36	2.30	1.1000	5	0.65	[0.12; 1.18]	1.2%	2.0%	
Wang 2022	36	5.10	2.1000	36	3.60	1.6000		0.79	[0.31; 1.28]	1.4%	2.1%	
Wang 2022	60	4.90	2.2000	60	3.40	1.5000	<u>p</u>	0.79	[0.42; 1.16]	2.4%	2.1%	
Wang 2022	34	3.40	1.5560	65	2.90	1.7040	Î	0.30	[-0.12; 0.72]	1.9%	2.1%	
Wang 2022	34	5.40	2.6000	35	4.70	1.8000	6	0.31	[-0.16; 0.79]	1.5%	2.1%	
Yu 2022	54	4.60	3.5000	156	3.60	2.5000	K	0.36	[0.05; 0.67]	3.4%	2.1%	
Zhang 2022 Zhang 2022	32	3.60	1.3000	78 89	3.40	1.3000	5	0.15	[-0.26; 0.56]	1.9%	2.1%	
Zhang 2022 Zhang 2022	35	3.50	1.4000		2.70	1.2000	2	0.63	[0.23; 1.03]	2.1%	2.1%	
Zhang 2022 Fixed effect model	40 1179	3.30	1.0000	40 2086	2.60	1.0000	í.	0.69 0.60	[0.24; 1.15] [0.51; 0.68]	1.6% 47.3%	2.1%	
Random effects model				2000			J.		[-0.60; 0.47]	41.370	48.9%	
Heterogeneity: $I^2 = 97\%$, τ		23, p < 0).01				2	-0.00	[-0.00, 0.4/]		-0.370	
Fixed effect model	2206			4259					[0.50; 0.62]			
Random effects model Heterogeneity: $I^2 = 96\%$, τ		61 0 - 0	0.01			Г		0.34	[0.07; 0.62]		100.0%	
Residual heterogeneity: $I^2 = 96\%$, τ			.01			-20	0 -10 0 10	20				
Residual neterogeneity: 1	- 50%,	וט.ט ~ ק				-20	-10 0 10	20				

Study	Total	Exp Mean	erimental SD	Total	Mean	Control SD		dised Mean erence	SMD	95%-CI	Weight (fixed)	Weight (random)
g1 = count Matsuwaki 2008 Lou 2015 Lee 2017	173	179.70 200.00 117.00	37.0000 10.0000 23.0000	47 214 20	78.30 10.00 10.00	17.8000 1.0000 2.0000		+		[3.46; 5.73] [26.19; 30.20] [5.02; 8.61]	0.7% 0.2% 0.3%	3.7% 3.2% 3.3%
Meng 2019 Nakamaru 2020 Gan 2021 Lu 2021		138.90 269.10 13.72 16.40	13.4000 268.4000 25.8190 12.7500	112 46 65 49	60.80 115.80 40.83 9.80	9.1000 172.9000 59.0580 11.3400			6.76 0.72 -0.48 0.56	[6.09; 7.44] [0.21; 1.24] [-1.10; 0.14] [-0.16; 1.28]	1.8% 3.2% 2.2% 1.6%	3.9% 3.9% 3.9% 3.9%
Wang 2021 Wen 2021 Chen 2022	169 40 33	119.30 52.00 93.20	17.5000 27.0000 104.1500	144 80 77	71.90 28.90 4.80	18.2000 22.1000 5.0400			2.65 0.96 1.54	[2.35; 2.96] [0.56; 1.36] [1.09; 2.00]	9.0% 5.3% 4.0%	4.0% 3.9% 3.9%
Deng 2022 Wang 2022 Wang 2022 Yu 2022	24 34 34 54	30.20 41.00 32.40 49.70	8.7000 27.4270 24.2000 51.3000	36 65 35 156	22.20 21.00 18.80 27.40	10.3000 14.0840 12.5000 47.1000			0.81 1.01 0.70 0.46	[0.28; 1.35] [0.57; 1.45] [0.21; 1.19] [0.15; 0.77]	2.9% 4.4% 3.6% 8.6%	3.9% 3.9% 3.9% 4.0%
Zhang 2022 Zhang 2022 Fixed effect model Random effects model	32 35 815	43.90 50.60	23.1000 20.4500	78 89 1313	24.30 14.20	17.7000 6.4490		- II	1.00 2.99 1.58 3.43	[0.57; 1.44] [2.44; 3.53] [1.45; 1.70] [2.30; 4.56]	4.5% 2.8% 55.1%	3.9% 3.9% 61.1%
Heterogeneity: $I^2 = 99\%$, τ^2 g1 = percentage Lou 2015	² = 5.16		.01 4.0000	214	8.00	2.0000		+		[17.26; 19.93]	0.5%	3.6%
Meng 2019 Qi 2020 Wen 2021	118 25 40	25.00 68.00 21.70	7.8000 16.6560 10.7000	112 26 80	15.90 11.38 12.20	3.8000 15.4200 7.6000			1.47 3.48 1.08	[1.17; 1.76] [2.58; 4.37] [0.68; 1.48]	9.9% 1.1% 5.2%	4.0% 3.8% 3.9%
Deng 2022 Wang 2022 Wang 2022 Yu 2022	24 34 34 54	21.30 16.80 49.70	5.8000 15.2700 10.9000 51.3000	36 65 35 156	18.50 10.90 11.60 27.40	6.2000 8.3760 7.7000 47.1000			1.50 0.92 0.55 0.46	[0.92; 2.09] [0.49; 1.36] [0.07; 1.03] [0.15; 0.77]	2.4% 4.5% 3.6% 8.6%	3.9% 3.9% 3.9% 4.0%
Zhang 2022 Zhang 2022 Fixed effect model Random effects model	32 35 569	18.80 23.20	10.8000 11.6380	78 89 891	10.50 9.80	7.9000 8.7470			0.93 1.38 1.27 2.89	[0.50; 1.36] [0.95; 1.81] [1.13; 1.41] [1.63; 4.15]	4.6% 4.6% 44.9%	3.9% 3.9% 38.9%
Heterogeneity: $l^2 = 99\%$, τ^2 Fixed effect model Random effects model	² = 4.01 1384	48, p < 0	.01	2204						[1.35; 1.53] [2.38; 4.02]	100.0%	 100.0%
Heterogeneity: $I^2 = 99\%$, τ^2 Residual heterogeneity: I^2)			Г -3() -20 -10	0 10 20		[2.30, 4.02]		100.0 /0

2C

Study	Total I		rimental SD	Total	Mean	Control SD			ardised N ifference			SMD	95%-CI	Weight (fixed)	Weight (random)
Li 2016	22	5.00	1.4820	188	5.00	1.4820			-			0.00	[-0.44; 0.44]	5.0%	6.0%
Calus 2019	19	9.00	2.9650	19	8.00	3.7060				-		0.29	[-0.35; 0.93]	2.4%	5.1%
Meng 2019	118	24.70	4.3300	112	15.70	4.5000						2.03	[1.71; 2.35]	9.6%	6.5%
Wu 2020	16	48.81	16.3000	64	42.82	16.9900				-		0.35	[-0.20; 0.90]	3.2%	5.5%
Mortuaire 2020	8	8.10	1.3000	40	6.90	2.0000						0.62	[-0.15; 1.39]	1.7%	4.5%
Gan 2021	12	42.30	27.3530	65	37.76	15.5000				-		0.25	[-0.36; 0.87]	2.6%	5.2%
Wen 2021	40	6.00	1.9000	80	5.80	1.7000			- B			0.11	[-0.27; 0.49]	6.8%	6.3%
Wang 2021	169	13.00	2.5000	144	12.00	2.0000						0.44	[0.21; 0.66]	19.4%	6.8%
Chen 2022	38	25.50	9.6360	95	20.00	9.6360				_		0.57	[0.18; 0.95]	6.7%	6.2%
Deng 2022	24	6.30	3.3000	36	6.50	2.9000			-			-0.06	[-0.58; 0.45]	3.7%	5.6%
Wang 2022	36	5.70	1.8000	36	5.20	1.7000						0.28	[-0.18; 0.75]	4.5%	5.9%
Wang 2022	60	6.00	2.2000	60	5.30	1.7000			- 10			0.35	[-0.01; 0.71]	7.5%	6.3%
Wang 2022	34	7.00	2.2230	65	6.00	2.2230			<u><u></u></u>	-		0.45	[0.03; 0.87]	5.6%	6.1%
Wang 2022	34	7.10	1.9000	35	6.60	1.7000			- =			0.27	[-0.20; 0.75]	4.4%	5.8%
Zhang 2022	32	5.70	1.8000	78	5.30	1.7000			- = } -			0.23	[-0.18; 0.64]	5.8%	6.1%
Zhang 2022	35	5.00	2.9600	89	4.00	2.2230			-	-		0.41	[0.01; 0.80]	6.3%	6.2%
Zhang 2022	40	7.00	1.5000	40	6.20	1.9000				-		0.46	[0.02; 0.91]	5.0%	6.0%
Fixed effect model Random effects model Heterogeneity: $J^2 = 85\%$, τ^2		66. p <	0.01	1246						-	_		[0.40; 0.60] [0.16; 0.69]	100.0% 	 100.0%
	0.200	, p ~	0.01				-2	-1	0	1	2				

2D

Study	Experimen Total Mean	tal SD Total I	Control Mean SD	Standardised Mean Difference	SMD	95%-CI	Weight (fixed)	Weight (random)
Van Zele 2014 Lou 2015 Nakayama 2016 Nakayama 2016 Lee 2017 Meng 2019 Qi 2020 Wu 2021 Wang 2021 Chen 2022	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30214001900190020001123026204000144	2.00 0.7410 7.00 0.3330 3.90 0.3000 3.90 0.3000 4.94 2.0500 4.60 1.5000 7.00 2.2230 7.00 1.4820 2.90 0.6600 7.00 2.2230		0.00 0.35 0.40 0.75 2.82 0.00 0.00 0.00 0.60	[0.58; 2.06] [-0.20; 0.20] [-0.64; 1.34] [-0.33; 1.13] [0.06; 1.43] [2.45; 3.18] [-0.55; 0.55] [-0.39; 0.39] [0.38; 0.83] [0.49; 1.27]	2.7% 9.2% 4.1% 8.1% 23.9%	8.4% 9.9% 7.5% 8.5% 9.6% 9.1% 9.5% 9.9%
Chen 2022 Fixed effect model Random effects mode Heterogeneity: I ² = 95%, ·	33 6.00 2.77 672		5.50 4.4470	3 -2 -1 0 1 2	0.12 0.55	[0.49, 1.27] [-0.28; 0.53] [0.44; 0.66] [0.13; 1.20]	7.4% 100.0%	9.5% 9.5% 100.0%

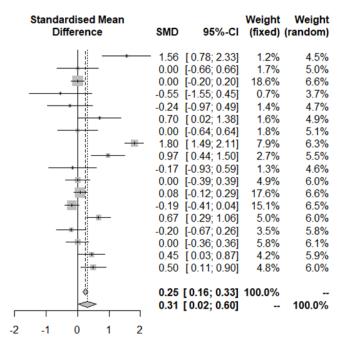
2E

Study T	Experimental otal Mean SD		Standardised Mean Difference	SMD 95%-0	Weight Weight I (fixed) (random)
Nakayama 2016 Nakayama 2016 Lee 2017 Meng 2019 Qi 2020 Wu 2021 Wang 2021 Chen 2022 Chen 2022	15 3.00 0.9266 173 5.00 0.5000 5 4.00 0.1000 12 3.90 0.3000 16 3.94 2.2800 118 7.90 1.3300 25 10.00 2.2230 68 5.00 4.4470 169 3.60 0.6600 38 10.00 3.8540 33 6.50 4.0770	214 1.00 0.6660 19 3.70 0.7000 19 3.70 0.7000 20 3.87 2.1500 112 3.40 1.0000 26 6.00 2.8160 40 4.00 4.2990 144 2.20 0.8300 95 6.00 5.1890	++++ + + + + + + + + + + + + + + + + +	1.19 [0.47; 1.9 6.68 [6.17; 7.19 0.46 [-0.54; 1.44; 0.33 [-0.39; 1.00 0.03 [-0.63; 0.69 3.80 [3.36; 4.22 1.55 [0.92; 2.14] 0.23 [-0.17; 0.65 1.88 [1.61; 2.13 0.82 [0.43; 1.22 0.49 [0.08; 0.9] 1.72 [1.58; 1.86 1.60 [0.48; 2.74]	j 7.3% 9.1% j 2.0% 8.7% j 3.6% 9.0% j 10.2% 9.2% j 10.2% 9.2% j 12.6% 9.2% j 12.6% 9.2% j 12.8% 9.2% j 11.3% 9.2%
			-6 -4 -2 0 2 4 6		

2F

Study		Experimental Mean SD		Control Mean SD		ardised I fference		:	SMD	95%-CI	Weight (fixed)	Weight (random)
Lou 2015 Nakayama 2016 Nakayama 2016 Lee 2017 Meng 2019 Qi 2020 Wu 2021 Wang 2021	173 5 12 16 118 25 68	3.00 0.6660 2.00 0.7000 0.20 0.4000 4.73 2.8000 3.60 1.3300 0.00 2.9650 0.00 2.2230 1.90 0.6600	214 19 20 112 26 40 144	0.50 0.6000 0.50 0.6000 4.04 1.9700 2.10 0.8300 1.00 3.5580 0.00 2.8160	_	+++	+		2.34 0.55 0.28 1.34 0.30	[3.58; 4.26] [1.12; 3.56] [-1.29; 0.19] [-0.38; 0.95] [1.05; 1.63] [-0.85; 0.25] [-0.39; 0.39]	9.6%	10.3% 8.7% 9.9% 10.3% 10.0% 10.2% 10.4%
Wang 2021 Chen 2022 Chen 2022 Fixed effect model Random effects model Heterogeneity: J ² = 98%, τ		0.50 3.7060 0.00 1.2970	95 77 766	0.00 1.4820 0.00 0.7410	-2	0	2		0.21 0.00 0.83	[0.05; 0.49] [-0.16; 0.59] [-0.41; 0.41] [0.71; 0.95] [-0.14; 1.62]	29.3% 10.3% 8.8% 100.0% 	10.4% 10.2% 10.2% 100.0%

2	G


Study	Experimenta Total Mean SI	l Cor) <mark>Total M</mark> ean	ntrol Standardised Mean SD Difference	SMD 95%-C	Weight Weight (fixed) (random)
Van Zele 2014 Lou 2015 Nakayama 2016 Nakayama 2016 Lee 2017 Meng 2019 Qi 2020 Wu 2021 Wang 2021 Chen 2022 Chen 2022	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 214 6.00 0.1 1 9 2.40 0.5 1 9 2.40 0.5 1 9 2.40 0.5 20 4.74 2.0 112 5.60 1.5 26 4.00 2.2 40 5.00 2.8 144 2.10 0.8 95 5.00 3.7	1666 5000 5000 5000 2230 8160 8300 7060 	-0.79 [-1.48; -0.10 0.00 [-0.20; 0.20 0.00 [-0.99; 0.99 -0.17 [-0.89; 0.56 0.25 [-0.41; 0.91 -0.75 [-1.01; -0.48 0.52 [-0.04; 1.08 0.40 [0.01; 0.80 0.00 [-0.22; 0.22 0.13 [-0.25; 0.50 0.58 [0.16; 0.99	28.0% 12.1% 1.2% 4.7% 2.1% 6.7% 2.6% 7.3% 15.7% 11.5% 3.6% 8.3% 7.2% 10.2% 22.8% 12.0% 7.9% 10.4%
Fixed effect model Random effects model Heterogeneity: $l^2 = 80\%$, τ	672	787		-0.04 [-0.14; 0.07] 0.02 [-0.25; 0.29]	100.0%

2H

		Exper	imental		(Control
Study	Total	Mean	SD	Total	Mean	SD
Matsuwaki 2008	9	0.89	0.1100	47	0.78	0.0600
Van Zele 2014	15	5.00	1.1110	21	5.00	2.2230
Lou 2015	173	5.00	0.1666	214	5.00	0.1666
Nakayama 2016	5	4.40	0.9000	19	5.20	1.5000
Nakayama 2016	12	4.80	1.8000	19	5.20	1.5000
Lee 2017	16	6.06	2.0200	20	4.80	1.5400
Calus 2019	19	4.00	1.4820	19	4.00	1.4820
Meng 2019	118	6.40	1.6600	112	3.80	1.1600
Nakamaru 2020	23	6.00	1.0000	46	4.30	2.0000
Mortuaire 2020	8	2.20	0.6100	40	2.30	0.5800
Wu 2021	68	5.00	1.4820	40	5.00	1.4820
Peng 2021	142	10.30	3.5000	249	10.00	3.7000
Wang 2021	169	5.00	1.0000	144	5.20	1.1600
Chen 2022	38	4.00	1.4820	95	3.00	1.4820
Wang 2022	36	8.50	1.8000	36	8.90	2.1000
Wang 2022	60	9.50	2.2000	60	9.50	2.1000
Wang 2022	34	9.00	2.2230	65	8.00	2.2230
Zhang 2022	35	10.00	2.2230	89	8.00	4.4470
Fixed effect model	980			1335		

Random effects model

Heterogeneity: $l^2 = 89\%$, $\tau^2 = 0.3159$, p < 0.01

21

Study	Total	Experi Mean	imental SD	Total	Mean	Control SD		dardised M Difference	ean	SMD	95%-CI	Weight (fixed)	Weight (random)
Matsuwaki 2008	9	23.30	4.7000	47	18.70	2.0000		-		1.75	[0.97; 2.54]	1.2%	3.5%
Akhtar 2010	36	22.78	1.4500	156	13.25	2.8300				3.61	[3.09; 4.12]	2.8%	4.0%
Van Zele 2014	15	23.00	5.1890	21	16.50	3.3350		_ }→		1.51	[0.75; 2.27]	1.3%	3.6%
Lou 2015	173	22.00	1.1660	214	20.00	1.6660				1.36	[1.14; 1.59]	15.2%	4.5%
Nakayama 2016	5	21.00	1.4000	19	17.40	3.8000		- <u></u> ++-	_	1.00	[-0.04; 2.03]	0.7%	3.0%
Nakayama 2016	12	19.00	5.3000	19	17.40	3.8000		+++		0.35	[-0.38; 1.08]	1.4%	3.6%
Li 2016	22	12.00	7.4120	188	12.00	7.4120		+		0.00	[-0.44; 0.44]	3.8%	4.2%
Meng 2019	118	18.30	3.3300	112	17.80	3.3300		- ## i		0.15	[-0.11; 0.41]	11.2%	4.4%
Du 2020	28		8.3760		15.00	9.6360		<u> ≖</u> {			[-0.12; 0.76]	3.8%	4.2%
Nakamaru 2020	23	19.80	3.6000	46	12.60	6.6000			-	1.23	[0.69; 1.77]	2.5%	4.0%
Salvador 2020	45	15.60	4.2000	87	11.10	4.3000		-		1.05	[0.67; 1.43]	5.1%	4.3%
Wu 2020			3.3500		13.03	5.3000		- (#		0.99	[0.42; 1.56]	2.3%	3.9%
Mortuaire 2020	8	19.50	4.0000	40	18.70	3.2000		-		0.24	[-0.52; 1.00]	1.3%	3.5%
Qi 2020			3.5000		16.10	4.3000					[0.11; 1.24]	2.3%	3.9%
Gan 2021			7.4120			10.7480		1	-		[0.51; 1.79]	1.8%	3.8%
Lu 2021	-		3.7000		18.00	7.4100		-+			[-0.71; 0.71]	1.5%	3.7%
Wu 2021			4.4470		17.00	4.2250		- 			[0.06; 0.85]	4.8%	4.3%
Chen 2022			6.8190		14.00	8.1540					[0.13; 0.89]	5.2%	4.3%
Deng 2022	24		3.0000		13.80	3.4000					[0.43; 1.52]	2.5%	4.0%
Wang 2022	36		2.3000		17.80	1.8000		- m			[-0.04; 0.90]	3.4%	4.1%
Wang 2022	60		2.9000		18.30	3.3000		-			[-0.62; 0.10]	5.8%	4.3%
Wang 2022			3.7060		17.00	3.7060					[0.11; 0.96]	4.2%	4.2%
Yu 2022			5.1000		14.10	4.4000		1 7			[0.46; 1.10]	7.4%	4.4%
Zhang 2022			3.6000		18.70	3.4000					[-0.64; 0.18]	4.4%	4.2%
Zhang 2022	40	19.10	3.2000	40	18.00	4.0000		- T		0.30	[-0.14; 0.74]	3.9%	4.2%
Fixed effect model	942			1827				1			[0.61; 0.78]	100.0%	-
Random effects model										0.74	[0.44; 1.04]		100.0%
Heterogeneity: $I^2 = 91\%$, τ^2	° = 0.51	34, p <	0.01										
							-4 -2	0	2 4				

2J

Study	Total	Ex Mean	perimental SD	Total	Mean	Control SD	Standardised Mean Difference	SMD	95%-CI	Weight (fixed)	Weight (random)
g1 = count Yenigun 2015 Gan 2021 Chen 2022 Yu 2022 Chen 2022 Fixed effect model Random effects mode Heterogeneity: / ² = 54%, t	33 217	3.80	1.1000 0.9340 1.6450 1553.0000 1.3490	78 65 95 156 77 471	4.10 3.82 3.05 3908.90 3.78	1.3000 1.7640 1.2300 1400.8000 1.2300		-0.14 0.20 -0.12 0.02 0.14	[0.18; 0.81] [-0.75; 0.48] [-0.17; 0.58] [-0.43; 0.19] [-0.39; 0.42] [-0.03; 0.30] [-0.14; 0.37]	14.7% 3.9% 10.4% 15.4% 8.9% 53.4%	9.2% 8.9% 9.1% 9.2% 9.1%
g1 = percentage Lou 2015 Du 2020 Qi 2020 Wu 2021 Chen 2022 Fixed effect model Random effects model Heterogeneity: I^2 = 99%, τ		55.00 52.00 55.51 54.35 52.90 54.00	1.0000 8.3000 6.3200 8.1020 10.3110 10.5260	214 68 26 40 95 77 520	48.00 54.60 54.82 56.60 51.45 54.90	1.0000 9.9000 6.7700 10.6000 7.8200 10.5630		-0.27 0.10 -0.25 0.17 -0.08 0.72	[6.45; 7.52] [-0.71; 0.17] [-0.45; 0.65] [-0.64; 0.15] [-0.21; 0.54] [-0.49; 0.32] [0.54; 0.89] [-0.86; 3.07]	5.2% 7.6% 4.9% 9.6% 10.4% 8.9% 46.6%	9.0% 9.1% 9.1% 9.1% 9.1% 9.1% 54.5%
Fixed effect model Random effects mode Heterogeneity: $I^2 = 98\%$, τ Residual heterogeneity: J^2	² = 2.670		01	991			-6 -4 -2 0 2 4		[0.28; 0.53] [-0.33; 1.62]	100.0% 	 100.0%

2K

Study	Experimenta Total Mean SI	l) Total Mear	Control SD	Standardised Mean Difference	SMD	95%-CI	Weight (fixed) (Weight random)
g1 = count Lou 2015 Gan 2021 Fixed effect model Random effects model Heterogeneity: I^2 = 78%, τ			3.5000 26.7670	*	-0.49 -1.13	[-1.42; -0.99] [-1.11; 0.13] [-1.33; -0.92] [-1.60; -0.22]	50.7% 6.2% 56.9%	26.3% 23.5% 49.8%
g1 = percentage Lou 2015 Qi 2020 Fixed effect model Random effects model Heterogeneity: $l^2 = 97\%$, τ^2				+ 	-0.41 -2.01	[-2.62; -2.10] [-0.97; 0.14] [-2.24; -1.77] [-3.30; 0.50]	35.3% 7.8% 43.1%	26.1% 24.1% 50.2%
Fixed effect model Random effects model Heterogeneity: $I^2 = 96\%, \tau^2$ Residual heterogeneity: I^2	² = 0.7239, <i>p</i> < 0.01	519		-2 -1 0 1 2		[-1.66; -1.35] [-2.01; -0.28]		 100.0%

Figure 2. The clinical, laboratory, and pathological features of patients with recurrent and non-recurrent CRSwNP. (A) Blood eosinophil levels, (B) tissue eosinophil levels, (C) total nasal symptom scores, (D) nasal obstruction symptom scores, (E) subjective olfactory dysfunction, (F) facial pain/headache symptom scores, (G) rhinorrhea symptom scores, (H) endoscopic nasal polyp scores, (I) Lund Mackey CT scores, (J) blood neutrophil levels, and (K) tissue neutrophil levels.

Figure 3A

Study	TE seTE	Odds Ratio	OR	95%-CI	Weight (fixed)	Weight (random)
Van Zele 2014	3.89 1.5157	‡	- 48.73 [2	2.50; 950.67]	0.9%	1.1%
Brescia 2015	0.81 0.7045		2.25	[0.57; 8.95]	4.3%	4.9%
Brescia 2015	0.73 0.6985		2.07	[0.53; 8.14]	4.4%	5.0%
Nakayama 2016	1.73 1.1799		5.67	[0.56; 57.24]	1.5%	1.8%
Nakayama 2016	0.53 1.0765		1.70	[0.21; 14.02]	1.9%	2.2%
Brescia 2017	1.95 0.4642		7.03	[2.83; 17.45]	10.0%	10.7%
Calus 2019	1.13 0.7887		3.11	[0.66; 14.60]	3.5%	4.0%
Du 2020	2.56 1.5660		12.92 [0.60; 278.22]	0.9%	1.0%
Nakamaru 2020	1.63 0.6071		5.13	[1.56; 16.86]	5.8%	6.5%
Salvador 2020	2.08 0.6883		8.00	[2.08; 30.83]	4.5%	5.1%
Mortuaire 2020	1.55 0.8205	ÉT	4.71	[0.94; 23.54]	3.2%	3.7%
Peng 2021	0.88 0.2584	13	2.40	[1.45; 3.99]	32.3%	28.6%
Peng 2021	0.82 0.2919		2.27	[1.28; 4.02]	25.3%	23.7%
Chen 2022	0.23 1.2400		1.26	[0.11; 14.28]	1.4%	1.6%
Fixed effect model		\$	3.10	[2.32; 4.13]	100.0%	
Random effects mo	del			[2.34; 4.37]		100.0%
	$\tau^2 = 0.0225, p = 0.38$					
	0.0	01 0.1 1 10 100				

3B

Study	TE seTE	Odds Ratio	OR 95	Weight %-CI (fixed)	Weight (random)
Nakayama 2016	0.29 1.2828		1.33 [0.11; 1	6.48] 0.8%	1.2%
Nakayama 2016	0.58 0.9166		1.78 [0.29; 1		2.2%
Salvador 2020	-0.54 0.3878	_ <u>_</u> [0.58 [0.27;		7.9%
Wu 2020	2.23 0.8739		- 9.29 [1.67; 5		2.4%
Qi 2020	0.55 0.7174		1.74 [0.43;		3.3%
Gan 2021	1.01 0.7023		2.75 [0.69; 1	0.89] 2.6%	3.4%
Wen 2021	0.74 0.3604	- 	2.10 [1.04;	4.26] 9.8%	8.6%
Wu 2021	0.81 0.4903	+ ja	2.25 [0.86;	5.89] 5.3%	5.9%
Chen 2022	0.73 0.4685	+ } -	2.07 [0.82;	5.18 5.8%	6.3%
Deng 2022	1.66 0.6325	}	5.25 [1.52; 1	8.12] 3.2%	4.0%
Wang 2022	1.00 0.6026	<u>+ {</u> =	2.73 [0.84;	8.89] 3.5%	4.4%
Wang 2022	1.12 0.4516	- <u>5</u>	3.05 [1.26;	7.39] 6.2%	6.6%
Wang 2022	0.73 0.6717		2.07 [0.55;	7.72] 2.8%	3.7%
Wang 2022	1.69 0.6354	<u> </u>	5.42 [1.56; 1	8.85] 3.2%	4.0%
Yu 2022	0.52 0.3179	+ 	1.68 [0.90;	3.13] 12.6%	9.8%
Zhang 2022	0.94 0.5811		2.55 [0.82;	7.96] 3.8%	4.6%
Zhang 2022	0.33 0.4605		1.40 [0.57;	3.44] 6.0%	6.4%
Zhang 2022	0.26 0.2740		1.29 [0.76;	2.21] 17.0%	11.2%
Chen 2022	-0.48 0.6097		0.62 [0.19;	2.05] 3.4%	4.3%
Fixed effect model Random effects model Heterogeneity: $I^2 = 30$	odel %, τ ² = 0.1092, <i>p</i> = 0.10	0.1 0.5 1 2 10	1.78 [1.43; 1.89 [1.43;	2.23] 100.0% 2.51]	 100.0%

3C

Study	TE seTE	Odds Ratio	OR	95%-CI	Weight (fixed)	Weight (random)
Akhtar 2010	-1.84 1.4530 —		0.16	[0.01; 2.73]	0.4%	1.0%
Van Zele 2014	-0.72 0.7316		0.48	[0.12; 2.03]	1.6%	2.9%
Lou 2015	0.48 0.2752		1.62	[0.94; 2.77]	11.0%	7.3%
Brescia 2015	0.80 0.4437	12 H	2.23	[0.93; 5.32]	4.2%	5.3%
Li 2016	0.06 0.5067		1.06	[0.39; 2.87]	3.3%	4.6%
Li 2016	0.24 0.5895	- <u></u>	1.27	[0.40; 4.03]	2.4%	3.9%
Brescia 2017	1.10 0.3052	§	3.02	[1.66; 5.49]	9.0%	6.9%
Lee 2017	1.48 0.8038	12 ×	4.41	[0.91; 21.30]	1.3%	2.6%
Calus 2019	0.00 0.6498		1.00	[0.28; 3.57]	2.0%	3.5%
Meng 2019	-0.28 0.2885		0.75	[0.43; 1.33]	10.0%	7.1%
Du 2020	-0.36 0.5076		0.70	[0.26; 1.89]	3.2%	4.6%
Nakamaru 2020	1.21 0.6263	<u>6</u> *	3.34	[0.98; 11.41]	2.1%	3.6%
Mortuaire 2020	-0.56 1.1398		0.57	[0.06; 5.34]	0.6%	1.5%
Qi 2020	0.95 0.6923	- 2 *	2.59	[0.67; 10.05]	1.7%	3.2%
Lu 2021	0.00 2.6299		<u> </u>	[0.01; 173.21]	0.1%	0.3%
Wu 2021	1.08 0.4122	<u>}</u>	2.93	[1.31; 6.58]	4.9%	5.6%
Wang 2021	0.35 0.3180	 }	1.42	[0.76; 2.65]	8.3%	6.8%
Peng 2021	-0.69 0.2340		0.50	[0.32; 0.80]	15.3%	7.8%
Chen 2022	0.36 0.3857	- 2 -	1.44	[0.67; 3.06]	5.6%	5.9%
Wang 2022	0.61 0.5678	- <u></u>	1.85	[0.61; 5.62]	2.6%	4.1%
Zhang 2022	0.46 0.3842	-	1.59	[0.75; 3.38]	5.7%	5.9%
Chen 2022	0.59 0.4209	- <u>18</u>	1.81	[0.79; 4.13]	4.7%	5.5%
Fixed effect model		¢.	1.30	[1.09; 1.55]	100.0%	
Random effects mo			1.39	[1.04; 1.87]		100.0%
Heterogeneity: $I^2 = 55\%$	$_{6}, \tau^{2} = 0.2342, p < 0.01$		I			
	0.01	0.1 1 10	100			

2	
3	υ

Study	TE seTE	Odds Ratio	OR	95%-CI	Weight (fixed)	Weight (random)
Matsuwaki 2008	1.21 0.8532	+ ;;	3.35	[0.63; 17.86]	0.4%	1.2%
Matsuwaki 2008	2.60 0.8504	!		[2.54; 71.16]	0.4%	1.2%
Akhtar 2010	0.46 0.3742			[0.76; 3.31]	1.9%	3.9%
Van Zele 2014	2.17 0.7768	++	8.80	[1.92; 40.34]	0.4%	1.4%
Brescia 2015	0.65 0.5726	- + 		[0.63; 5.90]	0.8%	2.2%
Lou 2015	2.32 0.3360			[5.24; 19.58]	2.3%	4.4%
Brescia 2015	0.52 0.5547	- + -	1.68	[0.57; 4.98]	0.9%	2.3%
Nakayama 2016	0.51 1.0220		1.67	[0.22; 12.35]	0.3%	0.8%
Nakayama 2016	0.80 0.7656		2.22	[0.50; 9.96]	0.4%	1.4%
Brescia 2017	1.51 0.3206		4.52	[2.41; 8.48]	2.6%	4.6%
Calus 2019	1.13 0.6947	+		[0.80; 12.14]	0.5%	1.6%
Meng 2019	0.70 0.3175	+ 		[1.08; 3.76]	2.6%	4.7%
Du 2020	1.39 0.4736	- <u> </u> + -	4.00	[1.58; 10.12]	1.2%	2.9%
Nakamaru 2020	1.02 0.5520			[0.94; 8.17]	0.9%	2.4%
Salvador 2020	2.18 0.4189			[3.88; 20.02]	1.5%	3.4%
Wu 2020	1.68 0.7126			[1.33; 21.68]	0.5%	1.6%
Qi 2020	1.40 0.6018			[1.25; 13.24]	0.7%	2.1%
Mortuaire 2020	1.10 0.8756			[0.54; 16.69]	0.3%	1.1%
Gan 2021	0.86 0.7661			[0.53; 10.66]	0.4%	1.4%
Lu 2021	0.96 1.7792			[0.08; 85.01]	0.1%	0.3%
Wen 2021	0.81 0.5433	+		[0.78; 6.53]	0.9%	2.4%
Wu 2021	1.39 0.4638			[1.61; 9.93]	1.2%	3.0%
Peng 2021	1.17 0.2219			[2.08; 4.96]	5.3%	6.2%
Peng 2021	1.23 0.2420	1		[2.13; 5.51]	4.5%	5.8%
Wang 2021	1.55 0.2867			[2.69; 8.27]	3.2%	5.1%
Wang 2021	0.72 0.0676			[1.80; 2.35]	57.5%	8.6%
Chen 2022	0.90 0.5582			[0.82; 7.33]	0.8%	2.3%
Deng 2022	1.30 0.7654			[0.82; 16.44]	0.4%	1.4%
Wang 2022	0.98 0.7355			[0.63; 11.22]	0.5%	1.5%
Wang 2022	0.74 0.5098			[0.77; 5.69]	1.0%	2.6%
Wang 2022	0.57 0.6020			[0.55; 5.78]	0.7%	2.1% 1.5%
Wang 2022	1.02 0.7379			[0.65; 11.75]	0.5%	
Yu 2022	1.18 0.5013			[1.22; 8.73]	1.0%	2.7%
Zhang 2022 Zhang 2022	0.22 0.6519 1.60 0.6115			[0.35; 4.49] [1.50; 16.50]	0.6% 0.7%	1.8% 2.0%
Zhang 2022 Zhang 2022	0.96 0.7304			[0.63; 10.95]	0.7%	2.0%
Chen 2022	1.49 0.5775			[1.43; 13.76]	0.5%	2.2%
Chen 2022					0.8%	2.2%
Chell 2022	1.38 0.5988		3.97	[1.23; 12.85]	0.1%	2.1%
Fixed effect model Random effects mod Heterogeneity: $I^2 = 42\%$				[2.32; 2.83] [2.66; 3.92]	100.0% 	 100.0%
12101030110117. 1210	,	0.1 0.51 2 10				

3E

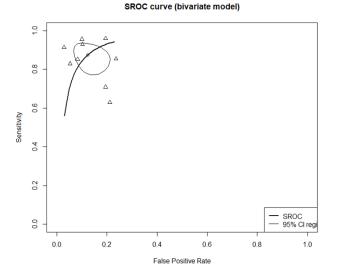
Study	TE seTE	Odds Ratio	OR	95%-CI	Weight (fixed)	Weight (random)
Brescia 2015	-0.40 0.5412	<u></u> [0.67	[0.23; 1.94]	7.9%	11.2%
Brescia 2015	1.21 0.4637		3.34	[1.35; 8.30]	10.8%	12.3%
Nakayama 2016	2.10 1.5448	_ <u></u>	- 8.13	[0.39; 167.90]	1.0%	3.2%
Nakayama 2016	-0.65 0.7476		0.52	[0.12; 2.25]	4.2%	8.5%
Wen 2021	1.12 0.4191		3.06	[1.35; 6.97]	13.2%	13.0%
Wang 2022	1.12 0.3046		3.07	[1.69; 5.58]	25.1%	14.7%
Yu 2022	0.78 0.3485	- 	2.19	[1.11; 4.33]	19.2%	14.1%
Zhang 2022	1.20 0.4371		3.33	[1.42; 7.85]	12.2%	12.7%
Chen 2022	3.32 0.6028		27.64	[8.48; 90.09]	6.4%	10.3%
Fixed effect model		🔶	2.80	[2.08; 3.78]	100.0%	
Random effects mod			2.81	[1.54; 5.12]		100.0%
Heterogeneity: $I^2 = 71\%$	$\tau^2 = 0.5480, p < 0.01$		1			
	0.01	0.1 1 10 10	00			

Figure 3. The comorbidities of recurrent CRSwNP and non-recurrent CRSwNP patients Aspirin-intolerance (A), allergic rhinitis (B), atopy (C), asthma (D), and eosinophilic chronic sinusitis (E).

Figure 4A

Study	Experime Events			ontrol Total	Odds Ratio	OR	95%-CI	Weight
g1 = blood Meng 2019 Meng 2019 Wen 2021 Chen 2022 Chen 2022 Random effects mode Heterogeneity: $I^2 = 63\%$, a		118 118 40 33 33 342 p = 0.	94 93 19 16 24	112 112 80 77 77 458	\$# [#] #	2.63 1.52 4.82 8.77 5.89 3.86	[1.10; 6.33] [0.72; 3.20] [2.13; 10.89] [3.48; 22.10] [2.38; 14.56] [2.07; 7.22]	7.4% 7.5% 7.4% 7.3% 7.3% 36.9%
g1 = tissue Lou 2015 Lou 2015 Meng 2019 Meng 2019 Qi 2020 Wen 2021 Wu 2021 Chen 2022 Deng 2022 Random effects mode Heterogeneity: l^2 = 88%, a Random effects mode Heterogeneity: l^2 = 92%, a	² = 1.9516,	1114		214 214 112 112 26 80 40 77 36 911 1369		192.86 95.54 18.97 63.25 6.30 112.00 85.79 10.06	[131.80; 900.10] [80.66; 461.14] [32.16; 283.81] [9.57; 37.58] [10.51; 380.81] [2.66; 14.90] [28.24; 444.23] [22.53; 326.61] [3.01; 33.63] [20.12; 145.60] [8.18; 52.32]	7.3% 7.4% 7.1% 7.5% 6.1% 7.4% 6.7% 6.8% 6.9% 63.1%

4B


Study	Events	Total		Proportion	95%-CI
g1 = blood Meng 2019 Meng 2019 Wen 2021 Chen 2022 Chen 2022 Random effects mode Heterogeneity: $I^2 = 0\%$, τ		204 197 43 — 39 - 48 — 531	***	0.53 0.56 0.59 0.50	[0.47; 0.61] [0.46; 0.60] [0.40; 0.71] [0.42; 0.74] [0.35; 0.65] [0.49; 0.58]
g1 = tissue Lou 2015 Lou 2015 Meng 2019 Meng 2019 Qi 2020 Wen 2021 Wu 2021 Chen 2022 Deng 2022 Random effects mode Heterogeneity: / ² = 80%,		$\begin{array}{c} 183\\ 157\\ 96\\ 103\\ 27\\ 35\\ 69\\ 35\\ 24\\ 729\\ p < 0.01 \end{array}$		- 0.96 - 0.85 0.85 0.63 - 0.93 0.83 0.71	[0.86; 0.95] [0.91; 0.98] [0.90; 0.99] [0.77; 0.92] [0.66; 0.96] [0.45; 0.79] [0.84; 0.98] [0.66; 0.93] [0.49; 0.87] [0.81; 0.93]
Random effects mode Heterogeneity: / ² = 94%, Residual heterogeneity: /	$x^2 = 1.1321$,	1260 <i>p</i> < 0.01 ○0.01 0.4	0.5 0.6 0.7 0.8 0.9	0.79	[0.67; 0.87]

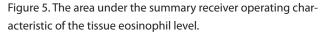

Study	Events Tota	I	Proportion 95%-CI
g1 = blood Meng 2019 Meng 2019 Wen 2021 Chen 2022 Chen 2022 Random effects mode Heterogeneity: $I^2 = 63\%$,			0.69 [0.48; 0.86] 0.58 [0.39; 0.75] 0.79 [0.68; 0.88] 0.86 [0.76; 0.93] 0.85 [0.74; 0.93] 0.78 [0.68; 0.85]
g1 = tissue Lou 2015 Lou 2015 Meng 2019 Meng 2019 Qi 2020 Wen 2021 Wu 2021 Chen 2022 Deng 2022 Random effects mode			 0.97 [0.94; 0.99] 0.90 [0.85; 0.94] 0.81 [0.73; 0.87] 0.76 [0.68; 0.83] 0.92 [0.73; 0.99] 0.79 [0.69; 0.87] 0.90 [0.76; 0.97] 0.95 [0.87; 0.99] 0.81 [0.64; 0.92] 0.88 [0.82; 0.93]
Heterogeneity: $I^2 = 83\%$, Random effects mode Heterogeneity: $I^2 = 83\%$, Residual heterogeneity: I'	$\tau^2 = 0.4895, p < 0.4895$	3 0.01	0.85 [0.79; 0.90]

Figure 4. Forest plots of diagnostic odds ratios (A), sensitivities (B), and specificities (C) of the serum and tissue eosinophil levels.

shown in Supplementary Tables 2 and 3. The individual grading of all studies was conducted by two researchers, and a composite score was derived by averaging the assessments provided by both reviewers. The evidence pertaining to the quality of the encompassed studies fell within the range of 6 to 7. Based on the interpretation of the Newcastle Ottawa scale, scores within the 6-7 range are regarded as indicative of high quality. Consequently, the inclusion of these studies in the analysis is deemed to be of good/ high quality.

The laboratory, clinical, and pathological features of patients with recurrent CRSwNP and others In terms of the laboratory findings, the percentage and count of blood eosinophils (SMD = 0.3432 [0.0668; 0.6195], l² = 95.5%) and those of tissue eosinophils (SMD = 3.1995 [2.3801; 4.0190], l² = 98.7%) were higher in RNP than non-RNP subjects (Figure 2A–C). In terms of clinical features, all of nasal obstruction (SMD = 0.6610 [0.1252; 1.1968], l² = 95.0%), the total nasal symptom score (SMD = 0.4243 [0.1585; 0.6901], l² = 85.2%), subjective olfactory dysfunction (SMD = 1.5962 [0.4775; 2.7149], l² = 98.3%), and the rate of endoscopically detected polyps (SMD = 0.3114 [0.0243; 0.5984], l² = 89.5%) were higher in RNP than nonRNP subjects (Figure 3A-C). In terms of radiological findings, the Lund-Mackey CT score (SMD = 0.7420 [0.4412; 1.0428] I² = 91.1%) was higher in RNP than non-RNP subjects (Figure 4). In contrast, the count and percentage of tissue neutrophils (SMD = -1.1463 [-2.0088; -0.2837], I² = 95.9%) were lower in RNP than in non-RNP subjects. However, there were no significant between-group differences in facial pain/headache (SMD = 0.7389 [-0.1390; 1.6168], I² = 97.9%), rhinorrhea (SMD = 0.0197 $[-0.2478; 0.2872], I^2 = 80.1\%)$, or the count or percentage of blood neutrophils (SMD = 0.6420 [-0.3327; 1.6167], $l^2 = 98.4\%$). Begg funnel plots and Egger tests of the Lund-Mackey CT score (p = 0.751), subjective olfactory dysfunction (p = 0.8749), endoscopic polyp score (p = 0.5107), facial pain (p = 0.8288), nasal obstruction (p = 0.567), rhinorrhea (p = 0.6094), total nasal symptom score (p = 0.2886), and the count and percentage of blood eosinophils (p = 0.089) suggested no publication bias. The count and percentage of tissue eosinophils (p < 0.001) were potentially biased. However, the trim and fill test revealed no significant difference between the observed and adjusted values (3.1995, p < 0.0001 vs. 2.3266, p < 0.0001]. Therefore, we conclude that there was no publication bias. The Begg funnel plot results are shown in Supplementary Figure 1. Publication

bias in terms of the neutrophil count and percentage could not be assessed given the small number of studies (< 10).

Comparison of comorbidities in recurrent CRSwNP and nonrecurrent CRSwNP patients

Aspirin-intolerance (OR = 3.0968 [2.3225; 4.1291], $l^2 = 6.1\%$), allergic rhinitis (OR = 1.7844 [1.4304; 2.2260], $l^2 = 30.4\%$), atopy (OR = 1.3925 [1.0366; 1.8706], $l^2 = 55.2\%$), and asthma (OR = 2.5620 [2.3172; 2.8326], $l^2 = 42.3\%$) were associated with RNP. Also, eosinophilic chronic sinusitis (OR = 2.8069 [1.5387; 5.1202], $l^2 = 71.3\%$) was associated with RNP.

Begg funnel plots and Egger tests of allergic rhinitis (p = 0.08494), aspirin-intolerance (p = 0.09311), and atopy (p = 0.5801) showed no publication bias. The Egger test (p = 0.004675) and the Begg funnel plot for asthma suggested publication bias. However, the Duval and Tweedie trim and fill test revealed no significant difference (2.5620, p < 0.0001 vs. 2.2622, p < 0.0001). Therefore, the risk of publication bias was low.

Diagnostic accuracy of serum and tissue eosinophil levels in terms of recurrent CRSwNP

Seven studies assessed the diagnostic accuracies of the eosinophil levels. The DOR for the count and percentage of tissue eosinophils in RNP patients was 54.1247 ([20.1194; 145.6050], $I^2 = 87.6\%$). The AUC was 0.936 (Figure 5). The sensitivity and specificity were 0.8809 ([0.8078; 0.9287], $I^2 = 81.2\%$) and 0.8834 ([0.8192; 0.9268], $I^2 = 82.6\%$), respectively. However, the DOR for the count or percentage of serum eosinophils in RNP patients was 3.8632 [2.0669; 7.2208], $I^2 = 63.1\%$). The AUC was 0.549. The sensitivity and specificity were 0.5367 ([0.4941; 0.5788], $I^2 = 0.0\%$) and 0.7779 ([0.6792; 0.8528], $I^2 = 76.7\%$), respectively. The

RNP serum eosinophil level thus evidenced a lower diagnostic power than the tissue eosinophil level (sensitivity: 0.8809 vs. 0.5367, p < 0.0001; specificity: 0.8834 vs. 0.7779, p = 0.0354; DOR: 54.1247 vs. 3.8632, p < 0.0001).

Sensitivity analyses and meta regression We eliminated each study individually and repeated the metaanalysis. All results agreed with those described above. The utilization of meta-regression analysis to assess the impact of follow-up periods yielded no significant effect on the estimates of SMD, OR, sensitivity, specificity, and diagnostic accuracy pertaining to laboratory, clinical, and pathological features, as well as underlying comorbidities, except for the percentage and count of tissue neutrophils (p = 0.04). It is noteworthy, however, that the SMD analysis of tissue neutrophils was based on only four studies, which might not provide adequate insight into the influence of follow-up periods. Therefore, additional studies are warranted to further elucidate this matter.

Discussion

When treating CRSwNP patients, most guidelines recommend initial prescription of a corticosteroid nasal spray and nasal irrigation. After follow-up, medical treatment is given if the symptoms do not improve, followed by ESS if there is still no improvement^(1, 2). However, CRSwNP is associated with a high RNP rate even after ESS⁽⁴⁷⁾; long follow-up is essential. Mucosal conditions can be managed via intensive follow-up or specific drug treatment. It is important that clinicians be aware of RNP factors in patients undergoing ESS surgery. However, to the best of our knowledge, no meta-analysis of factors predicting RNP has yet appeared. Currently, The European Position Paper on Rhinosinusitis and Nasal Polyps (EPOS) 2020 guideline suggests blood and tissue eosinophil levels as markers that can help predict RNP⁽¹⁾. However, the extensive investigation of the relative prognostic significance of these factors has been lacking. Also, the International Consensus statement on Allergy and Rhinology (ICAR) 2021 did not mention this topic⁽²⁾.

We identified various risk factors associated with RNP. Extensive CRSwNP with a high nasal symptom score or a high Lund Mackey CT score was associated with postoperative RNP. Of the nasal symptoms, nasal obstruction and olfactory dysfunction were closely related, but the facial pain/headache symptom score and the rhinorrhea symptom score less so. In patients with eosinophilic CRS, olfactory dysfunction is more severe than in others, and associated with poorer outcomes⁽¹⁴⁾. All elevated serum and tissue eosinophil/neutrophil numbers; more comorbidities; allergic conditions including allergic rhinitis, atopy and asthma; and aspirin-intolerance were related to RNP. Thus, in general, type 2 inflammation is strongly linked to RNP. The fact that tissue eosinophilia better predicts RNP than does serum eosinophilia emphasizes the need to collect tissues during ESS surgery and then analyze them. Also, although the serum neutrophil levels did not differ between the RNP and non-RNP groups, the fact that the tissue neutrophil level was lower in the RNP group also indicates the importance of tissue eosinophil/neutrophil analyses. In particular, tissue eosinophilia usefully identifies type 2 inflammation⁽¹⁾. We confirmed that tissue eosinophilia alone well-predicted RNP.

Eosinophilic CRS is gaining increasing attention in Asia. Early studies found that Asian patients evidenced more neutrophildominant (Th1/Th17) disease than Western patients⁽⁴⁸⁾, but recent studies have confirmed that the proportion of type 2 signatures is much higher in Asian patients⁽⁴⁹⁾.

Treatments for eosinophilic CRSwNP are under development. Although eosinophilic CRSwNP responds well to corticosteroids, long-term administration of such drugs causes various sideeffects including disruption of the hormonal system. Recently, monoclonal antibodies that reduce type 2 inflammation, including anti-immunoglobin E, anti-interleukin-4/13, and antiinterleukin-5 or -5 receptor- α antibodies have become commercially available⁽⁵⁰⁾. Although issues in terms of cost-effectiveness and the persistence of effects after drug discontinuation remain, these are promising alternatives to systemic corticosteroids. In terms of surgery, it has been reported that "reboot" surgery effectively removes type 2-inflamed mucosa⁽⁵¹⁾; this has been confirmed⁽⁵²⁾. Given the intractability of eosinophilic CRSwNP and the increasing number of patients, research on various treatment methods must continue.

This meta-analysis had several limitations. First, access to healthcare by country, institutional setting, post-operative care, differences in CRSwNP characteristics according to race, underlying diseases, definition of CRSwNP severity, primary ESS extent, patient compliance and differences in endoscopic polyp scoring according to raters may have affected the results. Due to the nature of the included studies, the impact of primary ESS methods or postoperative care by institution is considered to be an unavoidable cause of heterogeneity due to the nature of meta-analysis Large clinical trials with similar patient populations and standardized protocols are needed. Second, the data were collected from only a few regions (26/33 studies were from East and South Asia); geographical and genetic factors may influence clinical characteristics. Third, in most studies, follow-up was no longer than 2 years. Long-term, well-designed, largescale studies are needed.

Conclusion

Through this meta-analysis, various risk factors of postoperative RNP were identified, and it was confirmed that tissue eosinophil level alone could be used as a useful predictor of postoperative RNP.

Acknowledgement

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see:

http://www.textcheck.com/certificate/kCc1OI

Authorship contribution

DHK, SHH, contributed to study design, data collection, interpretation of results, drafting and critical evaluation of the final manuscript. JSH, GK, MAB contributed to study design, interpretation of results, drafting and critical evaluation of the final manuscript. SWK contributed to interpretation of results and critical evaluation of the final manuscript.

Conflict of interest

None declared.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00209494, 2022R1F1A1066232, 2019M3E5D5064110), and Korean Fund for Regenerative Medicine(KFRM) grant funded by the Korea government (23C0121L1). The sponsors had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

- Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020; 58: 1-464.
- Orlandi RR, Kingdom TT, Smith TL, et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol. 2021; 11: 213-739.
- Smith KA, Orlandi RR, Rudmik L. Cost of adult chronic rhinosinusitis: A systematic review. Laryngoscope. 2015; 125: 1547-1556.
- 4. Wang X, Zhang N, Bo M, et al. Diversity

of T(H) cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016; 138: 1344-1353.

- Wu AW, Ting JY, Platt MP, Tierney HT, Metson R. Factors affecting time to revision sinus surgery for nasal polyps: a 25-year experience. Laryngoscope. 2014; 124: 29-33.
- Bai J, Huang JH, Price CPE, et al. Prognostic factors for polyp recurrence in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2022; 150: 352-361.e357.
- 7. Du K, Zheng M, Zhao Y, et al. A Nomogram Combing Peripheral Parameters for

Estimation of CRSwNP Recurrence. Am J Rhinol Allergy. 2021; 35: 578-586.

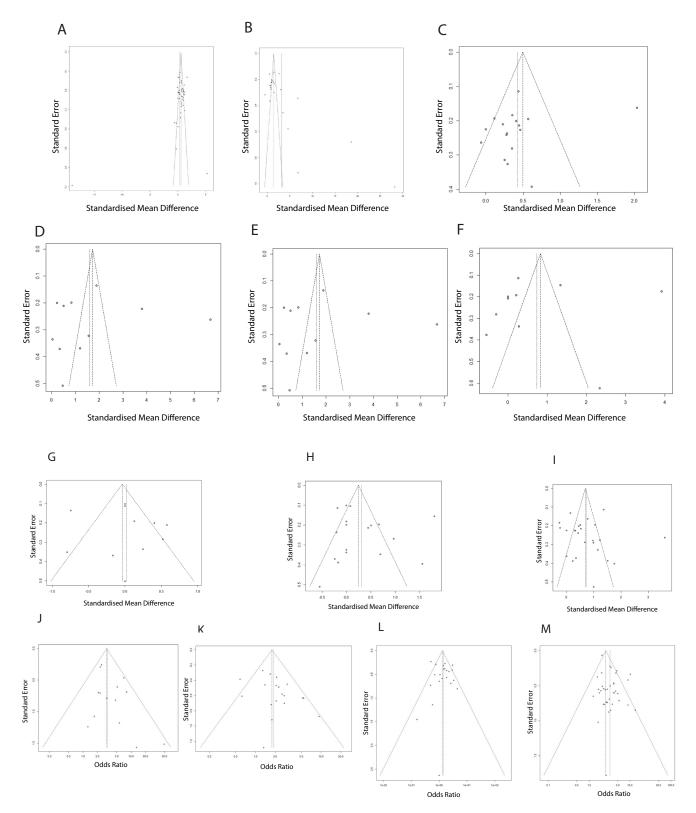
- Tokunaga T, Sakashita M, Haruna T, et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy. 2015; 70: 995-1003.
- Van Zele T, Holtappels G, Gevaert P, Bachert C. Differences in initial immunoprofiles between recurrent and nonrecurrent chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy. 2014; 28: 192-198.
- Vlaminck S, Acke F, Prokopakis E, et al. Surgery in Nasal Polyp Patients: Outcome After a Minimum Observation of 10 Years.

Am J Rhinol Allergy. 2021; 35: 449-457.

- 11. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015; 4:1.
- 12. Hwang SH, Kim J-S, Choi BY, Kim JK, Kim BG. Practical Review of Olfactory Training and COVID-19. J Rhinol. 2022; 29: 127-133.
- Hwang SH, Kim SW, Basurrah MA, Kim DH. Efficacy of steroid-impregnated spacers after endoscopic sinus surgery in chronic rhinosinusitis: A systematic review and meta-analysis. Clin Exp Otorhinolaryngol. 2023.
- Kim DH, Kim SW, Basurrah MA, Hwang SH. Clinical and Laboratory Features of Various Criteria of Eosinophilic Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis. Clin Exp Otorhinolaryngol. 2022; 15: 230-246.
- Matsuwaki Y, Ookushi T, Asaka D, et al. Chronic rhinosinusitis: risk factors for the recurrence of chronic rhinosinusitis based on 5-year follow-up after endoscopic sinus surgery. Int Arch Allergy Immunol. 2008; 146 Suppl 1: 77-81.
- Akhtar S, Ikram M, Azam I, Dahri T. Factors associated with recurrent nasal polyps: a tertiary care experience. J Pak Med Assoc. 2010; 60: 102-104.
- Brescia G, Marioni G, Franchella S, et al. Can a panel of clinical, laboratory, and pathological variables pinpoint patients with sinonasal polyposis at higher risk of recurrence after surgery? Am J Otolaryngol. 2015; 36: 554-558.
- Lou H, Meng Y, Piao Y, Wang C, Zhang L, Bachert C. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population. Am J Rhinol Allergy. 2015; 29: 350-356.
- 19. Yenigün A. Assessment of patients with nasal polyposis by the neutrophil-to-lymphocyte ratio and eosinophil-to-lymphocyte ratio. Kulak Burun Bogaz Ihtis Derg. 2015; 25: 193-199.
- Li QC, Cheng KJ, Wang F, Zhou SH. Role of atopy in chronic rhinosinusitis with nasal polyps: does an atopic condition affect the severity and recurrence of disease? J Laryngol Otol. 2016; 130: 640-644.
- 21. Nakayama T, Asaka D, Kanaya H, Kuboki A, Haruna S. Prognostic factors for recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyps. Auris Nasus Larynx. 2016; 43: 641-647.
- 22. Brescia G, Barion U, Zanotti C, Giacomelli L, Martini A, Marioni G. The prognostic role of serum eosinophil and basophil levels in sinonasal polyposis. Int Forum Allergy Rhinol. 2017; 7: 261-267.
- Lee W, Chang L, Huang Z, et al. A Retrospective Analysis of γδ T Cell Expression in Chronic Rhinosinusitis and Its Association with Recurrence of Nasal Polyps. ORL J Otorhinolaryngol Relat Spec. 2017; 79: 251-263.

- Calus L, Van Bruaene N, Bosteels C, et al. Twelve-year follow-up study after endoscopic sinus surgery in patients with chronic rhinosinusitis with nasal polyposis. Clin Transl Allergy. 2019; 9: 30.
- Meng Y, Zhang L, Lou H, Wang C. Predictive value of computed tomography in the recurrence of chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2019; 9: 1236-1243.
- 26. Mortuaire G, Gengler I, Carpentier C, Szymanski C, Chenivesse C, Lefevre G. T helper 2 inflammatory markers are associated with recurrence in chronic rhinosinusitis with nasal polyps after endoscopic sinus surgery. Rhinology. 2020; 58: 444-450.
- Nakamaru Y, Suzuki M, Honma A, et al. Preoperative Pulmonary Function Testing to Predict Recurrence of Chronic Rhinosinusitis With Nasal Polyps. Allergy Rhinol (Providence). 2020; 11: 2152656720946994.
- Qi S, Yan B, Liu C, Wang C, Zhang L. Predictive significance of Charcot-Leyden Crystal mRNA levels in nasal brushing for nasal polyp recurrence. Rhinology. 2020; 58: 166-174.
- 29. Salvador P, Lombo C, Silva FMd, Fonseca R. Chronic rhinosinusitis with nasal polyps: predictive factors for recurrence and revision surgery. International Journal of Otorhinolaryngology and Head and Neck Surgery. 2020; 6: 2165.
- Wu CL, Lee TJ, Huang CC, Chang PH, Fu CH. Clinical predictors of revision surgery for chronic rhinosinusitis with nasal polyposis within 5-year follow-up. Am J Otolaryngol. 2020; 41: 102654.
- Gan W, Zhang H, Yang F, Liu S, Liu F, Meng J. The influence of nasal microbiome diversity and inflammatory patterns on the prognosis of nasal polyps. Sci Rep. 2021; 11: 6364.
- Lu PC, Lee TJ, Huang CC, Chang PH, Chen YW, Fu CH. Serum eosinophil cationic protein: a prognostic factor for early postoperative recurrence of nasal polyps. Int Forum Allergy Rhinol. 2021; 11: 766-772.
- Peng Y, Liu Z, Yu Z, Lu A, Zhang T. Rectal Staphylococcus aureus Carriage and Recurrence After Endoscopic Sinus Surgery for Chronic Rhinosinusitis With Nasal Polyps: A Prospective Cohort Study. Ear Nose Throat J. 2021: 1455613211019716.
- Wang X, Meng Y, Lou H, Wang K, Wang C, Zhang L. Blood eosinophil count combined with asthma history could predict chronic rhinosinusitis with nasal polyp recurrence. Acta Otolaryngol. 2021; 141: 279-285.
- 35. Wen S, Cheng S, Xie S, Zhang H, Xie Z, Jiang W. Serum YKL-40 Levels Predict Endotypes and Associate with Postoperative Recurrence in Patients with Chronic Rhinosinusitis with Nasal Polyps. J Asthma Allergy. 2021; 14: 1295-1306.
- Wu D, Yan B, Wang Y, Zhang L, Wang C. Predictive Significance of Charcot-Leyden Crystal Protein in Nasal Secretions in Recurrent Chronic Rhinosinusitis with Nasal

Polyps. Int Arch Allergy Immunol. 2021; 182: 65-75.


- 37. Chen W, Bai Y, Kong W, et al. Predictive significance of Charcot-Leyden crystal structures for nasal polyp recurrence. Clin Transl Allergy. 2022; 12: e12212.
- Chen CL, Zhao JF, Guo CL, et al. Nasal secretion tissue plasminogen activator: A novel effective predictor of nasal polyp recurrence. J Allergy Clin Immunol Pract. 2022; 10: 2191-2194.e2193.
- Deng Z, Li Z, She Y, Xie B. Increased Expression of SERPINB10 Associated with Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps. Dis Markers. 2022; 2022: 7164318.
- 40. Wang G, Zheng H, Chen X, et al. Exploration of Predictive Biomarkers for Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps Based on Serum Multiple-Cytokine Profiling. Mediators Inflamm. 2022; 2022: 1061658.
- 41. Wang F, Chu W, Deng Z, Jing Q, Xie B. A Potential Role of B7-H4 Expression in Predicting the Recurrence of Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res. 2022; 15: 3421-3431.
- 42. Yu H, Kim DK. Neutrophils Play an Important Role in the Recurrence of Chronic Rhinosinusitis with Nasal Polyps. Biomedicines. 2022; 10.
- 43. Zhang H, Xie S, Fan R, Wang F, Xie Z, Jiang W. Elevated ALCAM Expression Associated with Endotypes and Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res. 2022; 15: 1063-1077.
- 44. Zhang Y, Zhu K, Chen J, et al. Predictive Values of Serum IL-33 and sST2 in Endotypes and Postoperative Recurrence of Chronic Rhinosinusitis with Nasal Polyps. Mediators Inflamm. 2022; 2022: 9155080.
- 45. Zhang F, Xu Z, He X, Sun Y, Zhao C, Zhang J. Increased B Cell-Activating Factor Expression Is Associated with Postoperative Recurrence of Chronic Rhinosinusitis with Nasal Polyps. Mediators Inflamm. 2022; 2022: 7338692.
- 46. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010; 25: 603-605.
- 47. Georgalas C, Cornet M, Adriaensen G, et al. Evidence-based surgery for chronic rhinosinusitis with and without nasal polyps. Curr Allergy Asthma Rep. 2014; 14: 427.
- Zhang N, Van Zele T, Perez-Novo C, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol. 2008; 122: 961-968.
- Zhang Y, Gevaert E, Lou H, et al. Chronic rhinosinusitis in Asia. J Allergy Clin Immunol. 2017; 140: 1230-1239.
- 50. Franzese CB. The Role of Biologics in the Treatment of Nasal Polyps. Immunol Allergy Clin North Am. 2020; 40: 295-302.

- Alsharif S, Jonstam K, van Zele T, Gevaert P, Holtappels G, Bachert C. Endoscopic Sinus Surgery for Type-2 CRS wNP: An Endotype-Based Retrospective Study. Laryngoscope. 2019; 129: 1286-1292.
- Malvezzi L, Pirola F, De Virgilio A, Heffler E. Long-lasting clinical, radiological and immunological remission of severe nasal polyposis by means of 'reboot' surgery. BMJ Case Rep. 2020; 13.

Se Hwan Hwang, M.D., Ph.D. Department of Otolaryngology Head and Neck Surgery Bucheon St. Mary's Hospital College of Medicine The Catholic University of Korea. 327 Sosa-ro, Bucheon-si Gyeonggi-do, 14647 Korea

Tel: +82 32 340 7044 Fax: +82 32 340 2674 E-mail: yellobird@catholic.ac.kr

SUPPLEMENTARY MATERIAL

Supplementary Figure 1. Begg funnel plots. (A) blood eosinophil level, (B) tissue eosinophil level, (C) total nasal symptom score, (D) nasal obstruction symptom score, (E) subjective olfactory dysfunction, (F) facial pain/headache symptom score, (G) rhinorrhea symptom score, (H) endoscopic nasal polyp score, (I) Lund Mackey CT score, (J) aspirin-intolerance, (K) allergic rhinitis, (L) atopy, and (M) asthma.

Supplementary Table 1. Search terms and queries.

PubMed #1 "Nasal Polyps"[TW] OR "Nasal Polyp"[TW] OR "Polyp, Nasal"[TW] OR "Polyps, Nasal"[TW] OR "Chronic r nusitis with nasal polyps"[TW] OR "CRSwNP"[TW] #3 Combine #1 OR #2 #4 "Rhinosinusitis"[TW] OR "Chronic rhinosinusitis"[TW] OR "cecurrent chronic rhinosinusitis"[TW] OR "CRSwNP"[TW] #5 "Rhinitis"[Mesh] #6 "Rhinitis"[TW] OR "Rhinitides"[TW] OR "Chronic rhinosinusitis"[TW] OR "Catarrh, Nasal"[TW] OR "Catarrh, Nasal"[TW] OR "Catarrh, Sinus Catarrhs"[TW] #7 "Sinusitis"[TW] OR "Binusitides"[TW] OR "Sinus Infections"[TW] OR "Infection, Sinus"[TW] OR "Infection Sinus"[TW] OR "Sinus Infections"[TW] OR "Infection, Sinus"[TW] OR "Infection Sinus"[TW] OR "Chronic Disease"[TW] OR "Infection, Sinus"[TW] OR "Chronic Disease"[TW] OR "Disease, Chronic"[TW] OR "Chronic Illness"[TW] #9 Combine #4 O R #5 O R #6 O R #7 OR #8 #10 "Chronic Disease"[TW] OR "Infection"[TW] OR "Chronic Illness"[TW] OR "Chronic Illnesses"[TW] OR "Chronic Illnesses"[TW] OR "Chronic Illness"[TW] OR "Chronic Illnesses"[TW] OR "Chronic Illness"[TW] OR "Chronic Illness"[TW] OR "Chronic Illness"[TW] OR "Chronic Illness"[TW] OR "Chronic III on Chronic Illness"[TW] OR "Chronic III on Chronic III on Chronic Illness"[TW] OR "Chronic III on Chronic III on Chronic III OR "Chronic III OR "Chronic III OR "Chronic III OR "Chronic III on Chronic III OR "Chronic IIIII "III OR "Chronic IIII OR "Chronic IIIIIIIIII "III OR "Chronic	hronic al"[TW] ons, /] OR s"[TW] inosinusi-
nusitis with nasal polyps"[TW] OR "CRSwNP"[TW] #3 Combine #1 OR #2 #4 "Rhinosinusitis"[TW] OR "Chronic rhinosinusitis"[TW] OR "recurrent chronic rhinosinusitis"[TW] OR "Cl rhinosinusitis with nasal polyps"[TW] OR "CRSwNP"[TW] #5 "Rhinitis"[Mesh] #6 "Rhinitis"[TW] OR "Rhinitides"[TW] OR "Nasal Catarrh"[TW] OR "Catarrh, Nasal"[TW] OR "Catarrh, Nasal"[TW] OR "Catarrhs, Nasa OR "Nasal Catarrhs"[TW] #7 "Sinusitis"[TW] OR "Sinusitides"[TW] OR "Sinus Infections"[TW] OR "Infection, Sinus"[TW] OR "Infection Sinus"[TW] OR "Sinus Infection"[TW] #8 "Sinusitis"[TW] OR "Chronic Diseases"[TW] OR "Disease, Chronic"[TW] OR "Chronic Illness"[TW] #9 Combine #4 OR #5 OR #6 OR #7 OR #8 #10 "Chronic Disease"[Mesh] #11 "Chronic Disease"[TW] OR "Inless, Chronic"[TW] OR "Chronic Condition"[TW] OR "Chronic Illness"[TW] OR "Chronic Illness"[TW] OR "Chronic Condition"[TW] OR "Chronic Illness"[TW] OR "Chronic Condition"[TW] OR "Chronic Inferest"[TW] OR "Chronic Condition"[TW] OR "Chronic Condition"[TW] OR "Chronic Inferest"[TW] OR "Chronic Condition"[TW] OR	hronic al"[TW] ons, /] OR s"[TW] inosinusi-
#4 "Rhinosinusitis"[TW] OR "Chronic rhinosinusitis"[TW] OR "recurrent chronic rhinosinusitis"[TW] OR "CRSwNP"[TW] #5 "Rhinitis"[Mesh] #6 "Rhinitis"[TW] OR "Relapse"[TW] OR "Nasal Catarrh"[TW] OR "Catarrh, Nasal"[TW] OR "Catarrh, Nasal"[TW] OR "Catarrhs, Nasa OR "Nasal Catarrhs"[TW] OR "Sinusitis"[TW] OR "Sinusitis"[TW] OR "Sinusitis"[TW] OR "Infection, Sinus"[TW] OR "Infection Sinus"[TW] OR "Infection"[TW] OR "Infection, Sinus"[TW] OR "Infection"[TW] OR "Sinus Infection"[TW] OR "Infection, Sinus"[TW] OR "Infection"[TW] OR "Infection, Sinus"[TW] OR "Infection"[TW] OR "Chronic Disease"[Mesh] #10 "Chronic Disease"[Mesh] #11 "Chronic Disease"[TW] OR "Chronic Diseases."[TW] OR "Chronic Condition: OR "Condition, Chronic Clinoliton"[TW] OR "Chronic Condition: OR "Condition, Chronic Chrochic Chronic Chronic Chroit Chronic Chronic Chronic Ch	al"[TW] ons, /] OR s"[TW] inosinusi-
rhinosinusitis with nasal polyps"[TW] OR "CRSwNP"[TW] #5 "Rhinitis"[Mesh] #6 "Rhinitis"[Mesh] #7 "Sinusitis"[Mesh] #7 "Sinusitis"[Mesh] #8 "Sinusitis"[TW] OR "Sinusitides"[TW] OR "Sinus Infections"[TW] OR "Infection, Sinus"[TW] OR "Infection Sinus"[TW] OR "Sinus Infection"[TW] #8 "Sinusitis"[Mesh] #9 Combine #4 OR #5 OR #6 OR #7 OR #8 #10 "Chronic Disease"[Mesh] #11 "Chronic Disease"[Mesh] #11 "Chronic Disease"[TW] OR "Chronic Condition"[TW] OR "Chronic Condition" OR "Condition, Chronic Chronic Cliption Chronic Chronic rhinosinusitis"[TW] OR "Chronic Condition" OR "Condition, Chronic"[TW] OR "Chronic Condition"[TW] OR "Chronic Condition" OR "Condition, Chronic"[TW] OR "Chronic Condition" OR "Condition, Chronic"[TW] OR "Chronic Condition" OR "Condition, Chronic"[TW] OR "Recurrences"[TW] OR "Chronic Condition" OR "Condition, Chronic"[TW] OR "Recurrence"[TW] OR "R	al"[TW] ons, /] OR s"[TW] inosinusi-
#6 "Rhinitis"[TW] OR "Rhinitides"[TW] OR "Nasal Catarrh"[TW] OR "Catarrh, Nasal"[TW] OR "Catarrhs, Nasa OR "Nasal Catarrhs"[TW] #7 "Sinusitis"[Mesh] #8 "Sinusitis"[TW] OR "Sinusitides"[TW] OR "Sinus Infections"[TW] OR "Infection, Sinus"[TW] OR "Infection Sinus"[TW] OR "Sinus Infection"[TW] #9 Combine #4 OR #5 OR #6 OR #7 OR #8 #10 "Chronic Disease"[Mesh] #11 "Chronic Disease"[Mesh] #11 "Chronic Disease"[TW] OR "Chronic Diseases, Chronic"[TW] OR "Chronic Illness;"[TW] OR "Chronic Illness;"[TW] OR "Chronic Condition"[TW] OR "Chronic Illness;"[TW] OR "Chronic Condition"[TW] OR "Chronic Illness;"[TW] OR "Chronic Condition" OR "Condition, Chronic"[TW] OR "Chronic"[TW] OR "Chronic rhinosinusitis"[TW] OR "Recurrence"[TW] OR "Chronic rhinosinusitie"[TW] OR "Chronic rhinosinus"[MeSH] NOT "Humans"[MeSH]) Database Search Search terms and queries	/] OR s"[TW] inosinusi-
OR "Nasal Catarrhs"[TW] #7 "Sinusitis"[Mesh] #8 "Sinusitis"[TW] OR "Sinusitides"[TW] OR "Sinus Infections"[TW] OR "Infection, Sinus"[TW] OR "Infection Sinus"[TW] OR "Infection"[TW] #9 Combine #4 OR #5 OR #6 OR #7 OR #8 #10 "Chronic Disease"[Mesh] #11 "Chronic Disease"[TW] OR "Chronic Diseases, Chronic"[TW] OR "Chronic Condition"[TW] OR "Chronic Condition"[TW] OR "Chronic Condition"[TW] OR "Chronic Condition"] OR "Condition, Chronic"[TW] OR "Chronically III"[TW] OR "Chronic rhinosinusitis"[TW] OR "Chronic condition: OR "Condition, Chronic"[TW] OR "CRSwNP"[TW] #12 Combine #10 OR #11 #13 Combine #3 AND #9 AND #12 #14 "Recurrence"[Mesh] #15 "Recurrence"[TW] OR "Recurrences"[TW] OR "Recurdescence"[TW] OR "Recurrent"[TW] OR "CRSwNP Recurrent" "Relapse"[TW] OR "Relapses"[TW] OR "recurrent"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrence" "INJ OR "Relapses"[TW] OR "Recurrences"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrence" "INJ OR "Relapses"[TW] OR "Recurrences"[TW] OR "not "humans"[MeSH]) Database Search Search terms and queries EMBASE #1 "nose polyp"/exp #2 "Nasal Polyps".ti,ab,kw,de OR "Nasal Polyps".ti,ab,kw,de OR "Polyps, Nasal".ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps".ti,ab,kw,de OR "CRSwNP".ti,ab,kw,de	/] OR s"[TW] inosinusi-
#8 "Sinusitis"[TW] OR "Sinus Infections"[TW] OR "Infection, Sinus"[TW] OR "Infection Sinus"[TW] OR "Infection Sinus"[TW] OR "Sinus Infection"[TW] #9 Combine #4 OR #5 OR #6 OR #7 OR #8 #10 "Chronic Disease"[Mesh] #11 "Chronic Disease"[Mesh] #11 "Chronic Disease"[TW] OR "Chronic Diseases"[TW] OR "Disease, Chronic"[TW] OR "Chronic Illness"[TW] OR "Chronic Condition"[TW] OR "Chronic Condition" OR "Condition, Chronic"[TW] OR "Chronically III"[TW] OR "Chronic Condition" OR "Condition, Chronic"[TW] OR "Chronically III"[TW] OR "Chronic rhinosinusitis"[TW] OR "Recurrence"[TW] OR "Recurrence	/] OR s"[TW] inosinusi-
Sinus"[TW] OR "Sinus Infection"[TW]#9 Combine#4 OR #5 OR #6 OR #7 OR #8#10"Chronic Disease"[Mesh]#11"Chronic Disease"[TW] OR "Chronic Diseases"[TW] OR "Disease, Chronic"[TW] OR "Chronic Condition" (TW] OR "Chronic Condition"[TW] OR "Chronic Condition" (TW] OR "Chronic Condition"(TW] OR "Chronic Condition" (TW] OR "Chronic Illnesses"[TW] OR "Chronically Ill"[TW] OR "Chronic Condition" (TW] OR "Chronic Thi tis with nasal polyps"[TW] OR "Chronically Ill"[TW] OR "Chronic rhinosinusitis"[TW] OR "Chronic rhi tis with nasal polyps"[TW] OR "CRSwNP"[TW]#12 Combine#10 OR #11#13 Combine#3 AND #9 AND #12#14"Recurrence"[Mesh]#15"Recurrence"[Mesh]#16 Combine#14 OR #15#17 Combine#14 OR #15#18 Limit#17 NOT ("animals"[MeSH] NOT "Humans"[MeSH])DatabaseSearchSearchSearch terms and queriesEMBASE#1"nose polyp"/exp#2"Nasal Polyps":ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "Chronic trinosinusitis with nasal polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Chronic trinosinus tis with nasal polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Chronic trinosinus tis with nasal polyps".ti,ab,kw,de OR "Chronic trinosinus tis with nasal polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Chronic trinosinus tis with nasal polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de	/] OR s"[TW] inosinusi-
#10"Chronic Disease"[Mesh]#11"Chronic Disease"[TW] OR "Chronic Diseases"[TW] OR "Disease, Chronic"[TW] OR "Chronic Illnesss"[TW] OR "Chronic Illnesss"[TW] OR "Chronic"[TW] OR "Chronic Condition OR "Condition, Chronic"[TW] OR "Chronic"[TW] OR "Chronic Condition OR "Condition, Chronic"[TW] OR "Chronic ally Ill"[TW] OR "Chronic rhi tis with nasal polyps"[TW] OR "Chronic"[TW] OR "Chronic rhi tis with nasal polyps"[TW] OR "CRSwNP"[TW] OR "Chronic rhi tis with nasal polyps"[TW] OR "CRSwNP"[TW]#12 Combine#10 OR #11#13 Combine#3 AND #9 AND #12#14"Recurrence"[Mesh]#15"Recurrence"[Mesh]#16 Combine#14 OR "Recurrences"[TW] OR "Recurrent"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrence#16 Combine#14 OR #15#17 Combine#13 AND #16#18 Limit#17 NOT ("animals"[MeSH] NOT "Humans"[MeSH])DatabaseSearchSearch terms and queriesEMBASE#1"nose polyp"/exp#2"Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp":ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de	s"[TW] inosinusi-
#11"Chronic Disease"[TW] OR "Chronic Diseases"[TW] OR "Disease, Chronic"[TW] OR "Chronic Illness;"[TW] OR "Chronic Illnesses"[TW] OR "Illness, Chronic"[TW] OR "Chronic Condition" OR "Condition, Chronic"[TW] OR "Chronically Ill"[TW] OR "Chronic rhinosinusitis"[TW] OR "Chronic rhi tis with nasal polyps"[TW] OR "CRSwNP"[TW] OR "Chronic rhinosinusitis"[TW] OR "Chronic rhinosinusitis"[TW] OR "Chronic rhi tis with nasal polyps"[TW] OR "CRSwNP"[TW] OR "Chronic rhinosinusitis"[TW] OR "Chronic rhinosinusitis"[TW] OR "Chronic rhi tis with nasal polyps"[TW] OR "CRSwNP"[TW]#12 Combine#10 OR #11#13 Combine#3 AND #9 AND #12#14"Recurrence"[Mesh]#15"Recurrence"[Mesh]#16"Recurrence"[TW] OR "Recurrences"[TW] OR "Recrudescence"[TW] OR "Recrudescences"[TW] OR "Relapse"[TW] OR "Relapses"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrence" [TW] OR "Telapse"[TW] OR "Postoperative"[TW] OR "CRSwNP Recurrence" [TW] OR "Telapse"[TW] OR "Telapse"[TW] OR "Postoperative"[TW] OR "CRSwNP Recurrence" [TW] OR "Relapse"[TW] OR "Relapses"[TW] OR "Postoperative"[TW] OR "CRSwNP Recurrence" [TW] OR "Relapse"[TW] OR "Relapses"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrence" [TW] OR "Telapse"[TW] OR "Relapses"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrence" [TW] OR "Relapse"[TW] OR "Postoperative"[TW] OR "CRSwNP Recurrence" [TW] OR "Relapse"[TW] OR "Telapse"[TW] OR "Postoperative"[TW] OR "CRSwNP Recurrence" [TW] OR "Combine #13 AND #16#18 Limit#17 NOT ("animals"[MeSH] NOT "Humans"[MeSH])DatabaseSearchSearch terms and queriesEMBASE#1"nose polyp"/exp#2"Nasal Polyps":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de	s"[TW] inosinusi-
"Chronic Illnesses"[TW] OR "Illness, Chronic"[TW] OR "Chronic Condition"[TW] OR "Chronic Condition OR "Condition, Chronic"[TW] OR "Chronically Ill"[TW] OR "Chronic rhinosinusitis"[TW] OR "Chronic rhi tis with nasal polyps"[TW] OR "CRSwNP"[TW] #12 Combine #10 OR #11 #13 Combine #3 AND #9 AND #12 #14 "Recurrence"[Mesh] #15 "Recurrence"[TW] OR "Recurrences"[TW] OR "Recrudescence"[TW] OR "Recrudescences"[TW] OR "Reclapses"[TW] OR "Relapses"[TW] OR "Recurrent"[TW] OR "Postoperative"[TW] OR "CRSwNP Recurrent" #16 Combine #14 OR #15 #17 Combine #13 AND #16 #18 Limit #17 NOT ("animals"[MeSH] NOT "Humans"[MeSH]) Database Search Search Search terms and queries EMBASE #1 "nose polyp"/exp #2 "Nasal Polyps":ti,ab,kw,de OR "Nasal Polyps":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de	s"[TW] inosinusi-
#13 Combine#3 AND #9 AND #12#14"Recurrence"[Mesh]#15"Recurrence"[TW] OR "Recurdescence"[TW] OR "Recrudescence"[TW] OR "Recrudescences"[TW] OR "Relapse"[TW] OR "recurrent"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrent"#16 Combine#14 OR #15#17 Combine#13 AND #16#18 Limit#17 NOT ("animals"[MeSH] NOT "Humans"[MeSH])DatabaseSearchEMBASE#1"nose polyp"/exp#2"Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp".ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "Polyps".ti,ab,k	ce"[TW]
#14"Recurrence"[Mesh]#15"Recurrence"[TW] OR "Recurrences"[TW] OR "Recrudescence"[TW] OR "Recrudescences"[TW] OR "Relapses"[TW] OR "Recurrent"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrent"#16 Combine#14 OR #15#17 Combine#13 AND #16#18 Limit#17 NOT ("animals"[MeSH] NOT "Humans"[MeSH])DatabaseSearchSearch terms and queries#10"nose polyp"/exp#2"Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp".ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSw	ce"[TW]
#15"Recurrence"[TW] OR "Recurrences"[TW] OR "Recrudescence"[TW] OR "Recrudescences"[TW] OR "Relapse"[TW] OR "Recurrent"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrent#16 Combine#14 OR #15#17 Combine#13 AND #16#18 Limit#17 NOT ("animals"[MeSH] NOT "Humans"[MeSH])DatabaseSearchSearch terms and queriesEMBASE#1"nose polyp"/exp#2"Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp".ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRS	ce"[TW]
"Relapse"[TW] OR "Relapses"[TW] OR "recurrent"[TW] OR "postoperative"[TW] OR "CRSwNP Recurrent" #16 Combine #14 OR #15 #17 Combine #13 AND #16 #18 Limit #17 NOT ("animals"[MeSH] NOT "Humans"[MeSH]) Database Search Search terms and queries EMBASE #1 "nose polyp"/exp #2 "Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp".ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "Polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR "CRSwNP":ti,ab,k	ce"[TW]
#17 Combine#13 AND #16#18 Limit#17 NOT ("animals"[MeSH] NOT "Humans"[MeSH])DatabaseSearchEMBASE#1"nose polyp"/exp#2"Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp":ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de OR	
#18 Limit #17 NOT ("animals"[MeSH] NOT "Humans"[MeSH]) Database Search EMBASE #1 "nose polyp"/exp #2 "Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp":ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de	
Database Search Search terms and queries EMBASE #1 "nose polyp"/exp #2 "Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp":ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps".ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de	
EMBASE #1 "nose polyp"/exp #2 "Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp":ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de	
#2 "Nasal Polyps":ti,ab,kw,de OR "Nasal Polyp":ti,ab,kw,de OR "Polyp, Nasal":ti,ab,kw,de OR "Polyps, Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de	
Nasal":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,kw,de	
#3 Combine #1 OR #2	
#4 "Rhinosinusitis":ti,ab,kw,de OR "Chronic rhinosinusitis":ti,ab,kw,de OR "recurrent chronic rhinosinusitis":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw,de OR "CRSwNP":ti,ab,	,kw,de
#5 "rhinitis"/exp	
#6 "Rhinitis":ti,ab,kw,de OR "Rhinitides":ti,ab,kw,de OR "Nasal Catarrh":ti,ab,kw,de OR "Catarrh, Nasal":ti,ab OR "Catarrhs, Nasal":ti,ab,kw,de OR "Nasal Catarrhs":ti,ab,kw,de	o,kw,de
#7 "sinusitis"/exp	
#8 "Sinusitis":ti,ab,kw,de OR "Sinusitides":ti,ab,kw,de OR "Sinus Infections":ti,ab,kw,de OR "Infection, Sinus":ti,ab,kw,de OR "Infections, Sinus":ti,ab,kw,de OR "Sinus Infection":ti,ab,kw,de	
#9 Combine #4 OR #5 OR #6 OR #7 OR #8	
#10 "chronic disease"/exp	
#11 "Chronic Disease":ti,ab,kw,de OR "Chronic Diseases":ti,ab,kw,de OR "Disease, Chronic":ti,ab,kw,de OR "Chronic Illness":ti,ab,kw,de OR "Chronic Illnesses":ti,ab,kw,de OR "Illness, Chronic":ti,ab,kw,de OR "Chronic Conditions":ti,ab,kw,de OR "Chronic Conditions":ti,ab,kw,de OR "Chronic Conditions":ti,ab,kw,de OR "Chronic rhinosinusitis":ti,ab,kw,de OR "Chronic rhinosinusitis with nasal polyps":ti,a	
OR "CRSwNP":ti,ab,kw,de	nronically
OR "CRSwNP":ti,ab,kw,de #12 Combine #10 OR #11	nronically
	nronically

Database	Search	Search terms and queries
	#15	"Recurrence":ti,ab,kw,de OR "Recurrences":ti,ab,kw,de OR "Recrudescence":ti,ab,kw,de OR "Recrudescences":ti,ab,kw,de OR "Relapse":ti,ab,kw,de OR "Relapses":ti,ab,kw,de OR "recurrent":ti,ab,kw,de OR "postoperative":ti,ab,kw,de OR "CRSwNP Recurrence":ti,ab,kw,de
	#16 Combine	#14 OR #15
	#17 Combine	#13 AND #16
	#18 Limit	#17 NOT ('animal'/exp NOT 'human'/exp)
Database	Search	Search terms and queries
Cochrane Library	#1	[mh "Nasal Polyps"]
	#2	"Nasal Polyps":ti,ab,kw OR "Nasal Polyp":ti,ab,kw OR "Polyp, Nasal":ti,ab,kw OR "Polyps, Nasal":ti,ab,kw OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw OR "CRSwNP":ti,ab,kw
	#3 Combine	#1 OR #2
	#4	"Rhinosinusitis":ti,ab,kw OR "Chronic rhinosinusitis":ti,ab,kw OR "recurrent chronic rhinosinusitis":ti,ab,kw OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw OR "CRSwNP":ti,ab,kw
	#5	[mh "Rhinitis"]
	#6	"Rhinitis":ti,ab,kw OR "Rhinitides":ti,ab,kw OR "Nasal Catarrh":ti,ab,kw OR "Catarrh, Nasal":ti,ab,kw OR "Catarrhs, Nasal":ti,ab,kw OR "Nasal Catarrhs":ti,ab,kw
	#7	[mh "Sinusitis"]
	#8	"Sinusitis":ti,ab,kw OR "Sinusitides":ti,ab,kw OR "Sinus Infections":ti,ab,kw OR "Infection, Sinus":ti,ab,kw OR "Infections, Sinus":ti,ab,kw OR "Sinus Infection":ti,ab,kw
	#9 Combine	{OR #4-#8}
	#10	[mh "Chronic Disease"]
	#11	"Chronic Disease":ti,ab,kw OR "Chronic Diseases":ti,ab,kw OR "Disease, Chronic":ti,ab,kw OR "Chronic Illness":ti,ab,kw OR "Chronic Illnesses":ti,ab,kw OR "Illness, Chronic":ti,ab,kw OR "Chronic Condition":ti,ab,kw OR "Chronic Conditions":ti,ab,kw OR "Condition, Chronic":ti,ab,kw OR "Chronically Ill":ti,ab,kw OR "Chronic rhinosinusitis":ti,ab,kw OR "Chronic rhinosinusitis with nasal polyps":ti,ab,kw OR "CRSwNP":ti,ab,kw
	#12 Combine	#10 OR #11
	#13 Combine	#3 AND #9 AND #12
	#14	[mh "Recurrence"]
	#15	"Recurrence":ti,ab,kw OR "Recurrences":ti,ab,kw OR "Recrudescence":ti,ab,kw OR "Recrudescences":ti,ab,kw OR "Relapse":ti,ab,kw OR "Relapses":ti,ab,kw OR "recurrent":ti,ab,kw OR "postoperative":ti,ab,kw OR "CRSwNP Recurrence":ti,ab,kw
	#16 Combine	#14 OR #15
	#17 Combine	#13 AND #16
Database	Search	Search terms and queries
Web of Science	#1	TS=("Nasal Polyp" OR "Chronic rhinosinusitis with nasal polyps" OR "CRSwNP")
	#2	TS=("Rhinosinusitis" OR "Rhinitis" OR "Sinusitis")
	#3	TS=("Chronic Disease" OR "Chronic rhinosinusitis" OR "CRSwNP" OR "Chronic")
	#4	TS=("Recurrence" OR "recurrent" OR "Relapse" OR "postoperative")
	#5 Combine	(#1 AND #2 AND #3) AND #4
Database	Search	Search terms and queries
Google Scholar	#1	"Nasal Polyp" OR "Chronic rhinosinusitis with nasal polyps" OR "CRSwNP"
	#2	"Rhinosinusitis" OR "Rhinitis" OR "Sinusitis"
	#3	"Chronic"OR "Chronic rhinosinusitis" OR "CRSwNP"
	#4	"Recurrence" OR "recurrent" OR "Relapse" OR "postoperative"
	#5 Combine	("Nasal Polyp" OR "Chronic rhinosinusitis with nasal polyps" OR "CRSwNP") AND ("Rhinosinusitis" OR "Rhinitis" OR "Sinusitis") AND ("Chronic"OR "Chronic rhinosinusitis" OR "CRSwNP") AND ("Recurrence" OR "recurrent" OR "Relapse" OR "postoperative")

Supplementary Table 2. Study characteristics.

Matsuwaki 2008Chort5643.118- 30.939.17Japan Japan Perentage and court of strum and tissue econjacy (1 surge cost nephil/ endoscopic poly score/ CT60Akhtar 2010Cohort19233.9:12.9120.72PakitanIncidence of allergy, asthmar/ hiomrhea, facial pain, officiarcy dysfunction / CT38 (24-00)Van ZeleCohort17051.8:15.3117/62ItalyIncidence of allergy, asthmar/ hiomrhea, facial pain39.6:4-00Van ZeleCohort17951.8:15.3117/62ItalyIncidence of allergy, asthmar/ aptic intolerance, and cosinophilic sinusitis/ count and percentage of serum cosinophilic sinusitis/ count and percentage of serum cosinophilic sinusitis/ count and percentage of serum cosinophilic sinusitis/ count and serum escinophili34.03Lu 2015Cohort1382.9.40:2.54102.56TurkeyControl ferum ecoinophili and meutolphiliMenspeci feedYangan SectionalScol45.5:1.382.0.9Japan and the count of strum ecoinophili and serum escinophili36.93Yangan SectionalScol45.5:1.382.7.9Japan and the count of strum ecoinophili and serum escinophili36.93Yangan SectionalScol45.5:1.382.7.9Japan and the count of strum ecoinophili and serum escinophili37.91Yangan SectionalScol45.5:1.382.7.11ChoaIncidence of allergy, strum alcord serum escinophili36.91Yangan SectionalScol45.5:1.382.7.11ChoaIncidence of allergy, strum a	Study	Study design	Num- ber of pa- tients	Age	Sex (M/F)	Nation	Outcomes	Follow-up (month)
Van Zele Van Zele 2014Cohort365.023 (4.33)19/17USAIncidence of allergy, asthma, asprin intolerance of all score (71 nearl obstruction, finiorithea, ofacial pain ecoinophili sinuality count and percentage of serum ecoinophili sinuality count and percentage of serum ecoinophili sinuality count and percentage of serum ecoinophili and eutrophili dispatcher (495)38.746.1±1.3.2214/173ChinaIncidence of allergy, asthma, asprin intolerance, and ecoinophili 		Cohort	56	•	39/17	Japan	incidence of asthma, allergy/ percentage of tissue eosi-	60
2014 (4.33) scopic polys score' CT / naal obstruction, minorrhea, and excore and excore of allergy, asthma, asplini intolerance, and escore trage of serum eosinophili sinusitis court and percentage of serum eosinophili court and percentage of serum eosinophili (4.33) Brescia 2015 Cohort 387 46.1±13.2 214/173 Chia incidence of allergy, asthma, asplini intolerance, and escore for yours occir CT / offactory (1.43) (4.95) Lou 2015 Cohort 387 46.1±13.2 214/173 Chia incidence of allergy, asthma, percentage of trase eosinophili endoscopic polys core' CT / offactory (1.43) (4.95) 2015 Sectional 158 29.40:5.4 102/5 Turkey Count of serum eosinophili and neutrolphili [4.95] 21016 Cohort 210 46 (28-56) 136/7 China Incidence of eosinophilis intustis, allergi hintinke, and excore of road secore polys core' CT 24 Nakayama Cross- 36 54.513.8 27/9 Japan Incidence of allergy, asthma, asplini intolerance, and escore polys core' CT 24 Nakayama Cross- 36 49.18-60 25/11 Chia Incidence of allergy, asthma, asplini intolerance descosinophili and eutrophili (1.7) rasai obstruction, fin	Akhtar 2010	Cohort	192	33 .9±12.9	120/72	Pakistan		38 (24-60)
Provide the section of the sectin the section of the		Cohort	36		19/17	USA	scopic polyp score/ CT/ nasal obstruction, rhinorrhea,	75.96
eosimophil/endoscopic poly socre/C17 / offectory(4-95)Yenigun 2015Cross- sectional15829.49±5.44102/56TurkeyCount of fsrue and areum eosimophil percentage and countNon speci- field and countLi 2016Cohort21046 (28-56)136/74ChinaIncidence of allergy/ total nasal symptom score/CT24Nakayama 2016Cross- sectional3654.5±13.827/9Japan antima, aspini intolerance/ endoscopic polys score/ C17 / nasal obstruction, rhinorthe, ficial pain, offactory dysfunction/ count of fissue and serum eosinophil36.9±10.3Brescia 2017Cohort28049.5±15.1174/106ItalyIncidence of allergy, ashma, aspirin intolerance/ endoscopic polys score/ C17 nasal obstruction, facial pain, offactory dysfunction/ count of fissue and serum eosinophil32.7±12.1Lee 2017Cohort3844 (31-54)25/13Belgiumincidence of allergy, ashma, aspirin intolerance/ endoscopic poly porter212.21Lee 2017Cohort3844 (31-54)25/13Belgiumincidence of allergy, astma, aspirin intolerance and score of nasal poly and total symptom score, and level of nasal polyparecreatage of eosimophil/ score of nasal polyparecreatage of count of serum serum and tissue and serum eosinophil/32.7±12.1Lee 2017Cohort3844 (31-54)25/13Belgiumincidence of allergy, astma, aspirin intolerance, and score of nasal polyp and total symptom score, and level score of nasal polyparecreatage and count of serum and tissue and serum eosinophil/32.7±12.1Du 2020	Brescia 2015	Cohort	179	51.8±15.3	117/62	Italy	eosinophilic sinusitis/ count and percentage of serum	32.8±14.7
2015 sectional field L1 2016 Cohot 210 46 (28-56) 136/74 China Incidence of allergy/total nasal symptom score/CT 24 Nakayama Cross- sectional 36 54.5±13.8 27/9 Japan Incidence of allergy/store of costophilic sinusits, allergic rhinitis, asthma, aspirin intolerance/ endoscopic polys score/ CT / nasal obstruction, rhinorhea, ficial pain, olfactory dysfunction / count of serum eosinophili 36.9±10.3 Brescia 2017 Cohort 280 49.5±15.1 174/106 Italy incidence of allergy, ashma, aspirin intolerance/ eosinophili 32.7±12.1 Lee 2017 Cohort 36 49 (18-60) 25/11 China Count of fisue and serum eosinophili / nasal obstruction, rhinorhea, olfactory dysfunction, facial pain/ endosco- pic polys score 720 Calus 2019 Cohort 38 44 (31-54) 25/13 Belgium incidence of allergy, asthma/ score of total nasal symp- tom, nasal obstruction, rhinorhea, olfactory dysfunction, rficial pain, CT, nasal polyp/percentage and cound of tissue and serum eosinophili 32.7±12.1 Du 2020 Cohort 96 48.7 (14.0) 76/20 China incidence of allergy, asthma, aspirin intolerance/ endo- serum eosinophil and lergy,	Lou 2015	Cohort	387	46.1±13.2	214/173	China	eosinophil/ endoscopic polyp score/ CT/ olfactory dysfunction, rhinorrhea, nasal obstruction, facial pain/ percentage and count of tissue and serum eosinophil and neutrophil/ diagnostic power of tissue eosinophil	
Nakayama 2016Cross- sectional3654.5±13.827/9JapanIncidence of esinophili sinusits, allergic rhinitis, asthma, aspirin intolerance/ nodoscopic polyp score/ (7/ rasal obstruction, rhinorrhea, facial pain, olfactory dysfunction/ count of serum eosinophil36.9±10.3Brescia 2017Cohort28049.5±15.1174/106Italyincidence of allergy, asthma, aspirin intolerance/ eosinophil32.7±12.1Lee 2017Cohort3649 (18-60)25/11ChinaCount of tissue and serum eosinophil/ nasal obstruction, rhinorrhea, olfactory dysfunction, facial pain/ endosco- pic polyp score>12Calus 2019Cohort3844 (31-54)25/13Belgiumincidence of allergy, asthma, aspirin intolerance and score of nasal polyp and total symptom score, and level of Total 1gs720Meng 2019Cohort23044.7±3.4128/102ChinaIncidence of allergy, asthma, aspirin intolerance, and score of nasal polyp and total symptom score, and level of Total 1gs32.7±12.1Mortuaire 2020Cohort9648.7 (14.0)76/20Chinaincidence of allergy, asthma, aspirin intolerance, and serum and tissue eadisenum eosinophil45Nakamaru 2020Cohort4849.5±13.830/18FranceIncidence of allergy, asthma, aspirin intolerance, and serum eosinophil/ CT/ percentage of serum eosinophil80.4(16.8)2020Cohort6955.3±13.334/35JapanIncidence of allergy, asthma, aspirin intolerance, and serum eosinophil/ CT/ endoscopic polyp score/CUT (out of serum eosinophil/ CT/ endosc	2		158	29.40±5.44	102/56	Turkey	Count of serum eosinophil and neurtolphil	•
2016sectionalsectionalasthma, aspirin intolerance/ endoscopic polyp score/ CT/ nasal obstruction, rhinorrhea, facial pain, offactory dysfunction/ count of serum eosinophil32.7±12.1Brescia 2017Cohort28049.5±15.1174/106Italyincidence of allergy, asthma, aspirin intolerance/ eosinophil32.7±12.1Lee 2017Cohort3649 (18-60)25/11ChinaCount of sisce and serum eosinophil/ nasial obstruction, rhinorrhea, offactory dysfunction, facial pain/ endosco- pic polyp score>12Calus 2019Cohort3844 (31-54)25/13Belgiumincidence of allergy, asthma, aspirin intolerance and score of nasal polyp and total symptom score, and level of total lqE720Meng 2019Cohort23044.7±3.4128/102ChinaIncidence of allergy, asthma, spirin intolerance, and score of nasal polyp and total symptom score of percen- tage and coung of tissue and serum eosinophil/32.7±12.1Du 2020Cohort9648.7 (14.0)76/20ChinaIncidence of allergy, asthma, aspirin intolerance, and serum of sionophil/CT/ percentage of serum eosinophil452020Cohort4849.5±13.830/18FranceIncidence of allergy, asthma, aspirin intolerance/ endo- score poly piccore/ CT / total nasal symptom / count of serum eosinophil/CT/ percentage of serum eosinophil60.4(16.8)2020Cohort4849.5±13.830/18FranceIncidence of allergy, asthma, aspirin intolerance/ endo- score pic polyp score/ CT / total nasal symptom / count of serum eosinophil60.4(16.8)202	Li 2016	Cohort	210	46 (28-56)	136/74	China	Incidence of allergy/ total nasal symptom score/ CT	24
Hild count and percentage and percentage of eosinophilLee 2017Cohort3649 (18-60)25/11ChinaCount of tissue and serum eosinophil/ nasal obstruction, rhinorrhea, olfactory dysfunction, facial pain/endosco-pic polyp score>12Calus 2019Cohort3844 (31-54)25/13Belgiumincidence of allergy, asthma, aspirin intolerance and score of nasal polyp and total symptom score, and level720Meng 2019Cohort23044.7±3.4128/102ChinaIncidence of allergy, asthma/ score of total nasal symptom score, and level32.7±12.1Du 2020Cohort9648.7 (14.0)76/20Chinaincidence of allergy, asthma, aspirin intolerance, and serum eosinophil/CT/ percentage and count of serum and tissue eosinophil/CT/ percentage of serum eosinophil45Du 2020Cohort4849.5±13.830/18FranceIncidence of allergy, asthma, aspirin intolerance/, end scrum eosinophil/80.4(16.8)VoltuaireCohort6955.3±13.33/435JapanIncidence of allergy, asthma, aspirin intolerance, count of tissue eand serum eosinophil/Non specifiedVol2020Cohort5143.7 (11.0)30/21ChinaIncidence of allergy, asthma, aspirin intolerance, count of tissue eand serum eosinophil/12-18Vol2020Cohort5143.7 (11.0)30/21ChinaIncidence of allergy, asthma, aspirin intolerance, count of tissue eand serum eosinophil/12-18Vol2020Cohort5143.7 (11.0)30/21ChinaIncidence of allergy, tasthma, aspirin12-18 <t< td=""><td></td><td></td><td>36</td><td>54.5±13.8</td><td>27/9</td><td>Japan</td><td>asthma, aspirin intolerance/ endoscopic polyp score/ CT/ nasal obstruction, rhinorrhea, facial pain, olfactory</td><td>36.9±10.3</td></t<>			36	54.5±13.8	27/9	Japan	asthma, aspirin intolerance/ endoscopic polyp score/ CT/ nasal obstruction, rhinorrhea, facial pain, olfactory	36.9±10.3
rhinorrhea, olfactory dysfunction, facial pain/ endosco- pic polyp scorerhinorrhea, olfactory dysfunction, facial pain/ endosco- pic polyp score720Calus 2019Cohort3844 (31-54)25/13Belgiumincidence of allergy, asthma, aspirin intolerance and score of nosal polyp and total symptom score, and level 	Brescia 2017	Cohort	280	49.5±15.1	174/106	Italy		32.7±12.1
Neng 2019Cohort23044.7±3.4128/102ChinaIncidence of allergy, asthma/ score of total nasal symptom32.7±12.1Du 2020Cohort9648.7 (14.0)76/20ChinaIncidence of allergy, asthma, aspirin intolerance, and serum eosinophil/CT/ percentage and count of serum and tissue eosinophil/CT/ percentage of serum eosinophil45Du 2020Cohort9648.7 (14.0)76/20ChinaIncidence of allergy, asthma, aspirin intolerance, and serum eosinophil/CT/ percentage of serum eosinophil45MortuaireCohort4849.5±13.830/18FranceIncidence of allergy, asthma, aspirin intolerance, endor serum eosinophil/CT/ percentage of serum eosinophil80.4(16.8)2020Cohort6955.3±13.334/35JapanIncidence of allergy, asthma, aspirin intolerance, count of tissue eosinophil/CT/ endoscopic polyp score/count of tissue eosinophil/CT/ endoscopic polyp score/count of tissue eosinophil/CT/ endoscopic polyp score/count of tissue eosinophil12-18Qi 2020Cohort5143.7 (11.0)30/21ChinaIncidence of allergy, asthma, aspirin intolerance, eout of tissue eosinophil/ICT/ endoscopic polyp score/ percentage of tissue and serum eosinophil12-18Qi 2020Cohort5143.7 (11.0)30/21ChinaIncidence of allergy, asthma, aspirin intolerance, eout of tissue and serum eosinophil/ICT/ endoscopic polyp score/ percentage of tissue and serum eosinophil12-18Qi 2020Cohort5143.7 (11.0)30/21ChinaIncidence of allergic rhinitis, allergy, asthma, aspirin38.4±182020Cohor	Lee 2017	Cohort	36	49 (18-60)	25/11	China	rhinorrhea, olfactory dysfunction, facial pain/ endosco-	>12
Image: Series of the series	Calus 2019	Cohort	38	44 (31-54)	25/13	Belgium	score of nasal polyp and total symptom score, and level	720
Serum of eosinophil/ CT/ percentage of serum eosinophilMortuaire 2020Cohort4849.5±13.830/18FranceIncidence of allergy, asthma, aspirin intolerance/ endo- scopic polyp score/ CT /total nasal symptom/ count of serum eosinophil80.4(16.8)Nakamaru 2020Cohort6955.3±13.334/35JapanIncidence of allergy, asthma, aspirin intolerance, count of tissue eosinophil/ CT/ endoscopic polyp score/count of tissue and serum eosinophilNon speci- fiedQi 2020Cohort5143.7 (11.0)30/21ChinaIncidence of asthma, allergic rhinitis/ nasal obstruc- tion, rhinorrhea, facial pain, olfactory dysfunction/ CT/ endoscopic polyp score/ percentage of tissue and serum eosinophil and neutrophil/diagnostic power of tissue eosinophil percentage12-18Salvador 2020Cohort13243.4±11.582/50PortugalIncidence of allergic rhinitis, allergy, asthma, aspirin intolerance/endoscopic polyp score/ CT/ count of serum eosinophil38.4±18Wu 2020Cohort10742.0±17.1760/20TaiwanIncidence of asthma, allergy/percentage of serum eosinophil/ total nasal symptom/ endoscopic polyp>60	Meng 2019	Cohort	230	44.7±3.4	128/102	China	tom, nasal obstruction, rhinorrhea, olfactory dysfunction, facial pain, CT, nasal polyp/percentage and count of serum and tissue eosinophil/diagnostic power of percen-	32.7±12.1
2020scopic polyp score/ CT /total nasal symptom/ count of serum eosinophilNakamaru 2020Cohort6955.3±13.334/35JapanIncidence of allergy, asthma, aspirin intolerance, count of tissue eosinophil/ CT/ endoscopic polyp score/count of fiedNon speci- fiedQi 2020Cohort5143.7 (11.0)30/21ChinaIncidence of asthma, allergic rhinitis/ nasal obstruc- tion, rhinorrhea, facial pain, olfactory dysfunction/ CT/ 	Du 2020	Cohort	96	48.7 (14.0)	76/20	China		45
2020cosinophil/CT/ endoscopic polyp score/count of tissue and serum eosinophilfiedQi 2020Cohort5143.7 (11.0)30/21ChinaIncidence of asthma, allergic rhinitis/ nasal obstruc- tion, rhinorrhea, facial pain, olfactory dysfunction/CT/ endoscopic polyp score/ percentage of tissue and serum eosinophil percentage12-18SalvadorCohort13243.4±11.582/50PortugalIncidence of allergic rhinitis, allergy, asthma, aspirin intolerance/endoscopic polyp score/CT/ count of serum eosinophil38.4±18Wu 2020Cohort10742.0±17.1760/20TaiwanIncidence of asthma, allergy/percentage of serum eosinophil/total nasal symptom/ endoscopic polyp>60		Cohort	48	49.5±13.8	30/18	France	scopic polyp score/ CT /total nasal symptom/ count of	80.4(16.8)
tion, rhinorrhea, facial pain, olfactory dysfunction/ CT/ endoscopic polyp score/ percentage of tissue and serum eosinophil and neutrophil/diagnostic power of tissue eosinophil percentageSalvador 2020Cohort13243.4±11.582/50Portugal endoscopic polyp score/ endoscopic polyp score/ CT/ count of serum eosinophil38.4±18Wu 2020Cohort10742.0±17.1760/20Taiwan eosinophil/ total nasal symptom/ endoscopic polyp>60		Cohort	69	55.3±13.3	34/35	Japan	tissue eosinophil/ CT/ endoscopic polyp score/count of	•
2020 intolerance/endoscopic polyp score/ CT/ count of serum eosinophil Wu 2020 Cohort 107 42.0±17.17 60/20 Taiwan Incidcence of asthma, allergy/percentage of serum eosinophil/ total nasal symptom/ endoscopic polyp >60	Qi 2020	Cohort	51	43.7 (11.0)	30/21	China	tion, rhinorrhea, facial pain, olfactory dysfunction/ CT/ endoscopic polyp score/ percentage of tissue and serum eosinophil and neutrophil/diagnostic power of tissue	12-18
eosinophil/ total nasal symptom/ endoscopic polyp		Cohort	132	43.4±11.5	82/50	Portugal	intolerance/endoscopic polyp score/ CT/ count of serum	38.4±18
	Wu 2020	Cohort	107	42.0±17.17	60/20	Taiwan	eosinophil/ total nasal symptom/ endoscopic polyp	>60

Study	Study design	Num- ber of pa- tients	Age	Sex (M/F)	Nation	Outcomes	Follow-up (month)
Gan 2021	Cohort	77	48.62±6.33	34/43	China	incidence of allergy, asthma/ total nasal symptom/ CT/ count of tissue and serum of eosinophil and neutrophil	12
Lu 2021	Cohort	58	48 (36-57)	43/15	Taiwan	Incidence of allergy, asthma/ count of serum and tissue eosinophil/ CT	27.9 ± 15.5
Peng 2021	Cohort	432	47.0±12.3	201/190	China	Incidence of allergy, aspirin intolerance, asthma/endo- scopic polyp score/ count of serum eosinophil	>24
Wang 2021	Cohort	203	46.6±4.1	181/132	China	Incidece of allergy, asthma/endoscopic polyp score/ nasal obstruction, rhinorrhea, olfactory dysfunction, facial pain, total nasal symptom/ percentage of serum eosinophil and count of tissue eosinophil	24
Wen 2021	Cohort	120	43.3±12.5	71/49	China	Incidence of allergic rhinitis, asthma, eosinophilic sinu- sitis/ total nasal symptom/ CT/count and percentage of tissue and serum eosinophil/ diagnostic power of tissue and serum eosinophil count and percentage	Non speci- fied
Wu 2021	Cohort	108	44.8±12.1	69/39	China	Incidence of asthma, allergy/ nasal obstruction, rhinorr- hea, facial pain, olfactory dysfunction/ endoscopic polyp score/ CT/ percentage of serum eosinophil and neutrop- hil / diagnostic power of tissue eosinophil percentage	Non speci- fied
Chen 2022	Cohort	133	42.0 (29.0- 52.0)	89/44	China	incidence of allergy, asthma, allergic rhinitis, aspirin intolerance/ nasal obstruction, rhinorrhea, facial pain, olfactory dysfuction, total nasal symptom/ endoscopic polyp score/ CT/count and percentage of neutrophil and eosinophil	12
Chen 2022	Cohort	110	44.0 (32.0- 51.500	72/38	China	incidence of allergy, asthma, allergic rhinitis, ASA intolerance, and eosinophilc sinusitis and score of nasal obstruction, rhinorrhea, facial pain, olfactory dysfunc- tion, and count and percentage of serum and tissue eosinophil	24
Deng 2022	Cohort	60	40.1±11.4	38/22	China	incidence of allergy, asthma/ count and percentage of tissue and serum eosinophil/ total nasal symptom/ CT/ diagnostic value of tissue eosinophil percentage	Non speci- fied
Wang 2022	Cohort	72	41.0±10.9	33/39	China	Incidcence of asthma, allergy/count and percentage of serum eosinophil/ total nasal symptom/ endoscopic polyp score/ CT	Non speci- fied
Wang 2022	Cohort	99	43.1±17.2	58/41	China	Incidence of allergy, allergic rhinitis, asthma, eosinophilic sinusitis/ count and percentage of serum and tissue eosinophil/ total nasal symptom/ endoscopic polyp score/ CT	Non speci- fied
Yu 2022	Cohort	210	52.8±13.7	167/43	Korea	Incidence of eosinophil sinusitis, asthma, allergic rhinitis/ CT/ count of tissue eosinophil and percentage of serum eosinophil and neutrophil	12
Zhang 2022	Cohort	110	41.4±10.7	59/51	China	Incidence of allergic rhinitis, asthma, eosinophilic sinu- sitis/ count and percentage of tissue eosinophil/ total nasal symptome/ CT/count and percentage of tissue amd serum eosinophil	24
Zhang 2022	Cohort	124	33.1±8.8	74/50	China	Incidence of allergy, allergic rhirnitis, asthma/ count and percentage of tissue and serum eosinophil/ CT/ endo- scopic polyp score/ total nasal symptom	36
Zhang 2022	Cohort	80	40.7±10.4	37/33	China	Incidence of allergic rhinitis, asthma/ count and percen- tage of serum eosinophil/ score of total nasal symptom/ CT/ count and percentage of serum eosinophil	Non speci- fied

Supplementary Table 3. Quality (risk of bias) assessment.

Study (year)		Selectio	n ª		Comparability ^b			Exposure ^c		The
	1	2	3	4	5A	5B	6	7	8	Newcastle- Ottawa Scale
Matsuwaki 2008	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	6
Akhtar 2010	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Van Zele 2014	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Brescia 2015	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	6
Lou 2015	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Yenigun 2015	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Li 2016	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Nakayama 2016	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Brescia 2017	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Lee 2017	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	6
Calus 2019	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Meng 2019	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Du 2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	6
Mortuaire 2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Nakamaru 2020	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Qi 2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	6
Salvador 2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Wu 2020	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	6
Gan 2021	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Lu 2021	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	6
Peng 2021	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Wang 2021	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Wen 2021	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Wu 2021	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Chen 2022	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Chen 2022	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	6
Deng 2022	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Wang 2022	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	6
Wang 2022	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Yu 2022	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Zhang 2022	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	7
Zhang 2022	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7
Zhang 2022	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	7

A star rating system was used to indicate the quality of a study, with a maximum of nine stars. A study could be awarded a maximum of one star for each numbered item within the selection and exposure categories.

^a Selection (4 items): adequacy of case definition; representativeness of the cases; selection of controls; and definition of controls.

^b Comparability (1 item): comparability of cases and controls based on the design or analysis.

^c Exposure (3 items): ascertainment of exposure; same method of ascertainment for cases and controls; and non-response rate (same rate for both groups).