
ORIGINAL CONTRIBUTION

Development and multicenter validation of a novel 
radiomics-based model for identifying eosinophilic chronic 
rhinosinusitis with nasal polyps*

Abstract
Background: Reliable noninvasive methods are needed to identify endotypes of chronic rhinosinusitis with nasal polyps 

(CRSwNP) to facilitate personalized therapy. Previous computed tomography (CT) scoring system has limited and inconsistent 

performance in identifying eosinophilic CRSwNP. We aimed to develop and validate a radiomics-based model to identify eosinop-

hilic CRSwNP. 

Methods: Surgical patients with CRSwNP were recruited from Tongji Hospital and randomly divided into training (n = 232) and 

internal validation cohort (n = 61). Patients from two additional hospitals served as external validation cohort-1 (n = 84) and 

cohort-2 (n = 54), respectively. Data were collected from October 2013 to May 2021. Eosinophilic CRSwNP was determined by 

histological criterion. The least absolute shrinkage and selection operator and the logistic regression (LR) algorithm were used to 

develop a radiomics model. Univariate and multivariate LR were employed to build models based on CT scores, clinical characte-

ristics, and the combination of radiological and clinical characteristics. Model performance was evaluated by assessing discrimina-

tion, calibration, and clinical utility.

Results: The radiomics model based on 10 radiomic features achieved an area under the curve (AUC) of 0.815 in the training 

cohort, significantly better than the CT score model based on ethmoid-to-maxillary sinus score ratio with an AUC of 0.655. The 

combination of radiomic features and blood eosinophil count had a further improved performance, achieving an AUC of 0.903. 

The performance of these models was confirmed in all validation cohorts with satisfying predictive calibration and clinical ap-

plication value. 

Conclusion: A CT radiomics-based model is promising to identify eosinophilic CRSwNP. This radiomics-based method may pro-

vide novel insights in solving other clinical concerns, such as guiding personalized treatment and predicting prognosis in patients 

with CRSwNP.
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Identification of eosinophilic CRSwNP by radiomics

Introduction
Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a he-

terogeneous disorder of inflammation of the sinonasal mucosa, 

which imposes significant health and socioeconomic burdens 

worldwide (1,2). Based on the severity of tissue eosinophil infil-

tration, CRSwNP is divided into two subtypes: eosinophilic and 

noneosinophilic CRSwNP (3,4). These 2 subtypes differ significant-

ly in immunopathological and clinical features and demonstrate 

distinct responses to glucocorticoid and macrolide treatment, 

endoscopic sinus surgery, and potential biologics targeting type 

2 cytokines (1,2,5,6). Therefore, it is crucial to distinguish eosinophi-

lic and noneosinophilic CRSwNP, for the purpose to optimize the 

treatment and avoid unnecessary health expenditure.

The gold standard of diagnosis of eosinophilic CRSwNP is the 

quantification of tissue eosinophil by histopathological me-

thods. However, this method requires invasive tissue sampling 

and is time-consuming. Thus, several attempts have been 

made to identify noninvasive markers or models for diagnosing 

eosinophilic CRSwNP. Asthma comorbidity (2,6,7), Lund–Mackay 

computed tomography (CT) score (7,8), blood eosinophil count 

and percentage (7,9), nasal secretion Charcot-Leyden crystal (CLC) 

levels (10), and the Japanese Epidemiological Survey of Refractory 

Eosinophilic Chronic Rhinosinusitis (JESREC) scoring system 

have been found to be valuable in identifying eosinophilic 

CRSwNP (11), but with limited or inconsistent performance. In 

addition, previous studies on these markers have poor quality, 

particularly lacking internal and external validation. Currently, 

CT scan is the gold standard in the radiologic evaluation of 

CRS and conducted under standard procedures in hospitals. 

The Lund–Mackay score is the most used and validated scoring 

system of sinonasal inflammatory changes. However, the semi-

quantitative nature and narrow scale range (0, 1, and 2) of the 

Lund–Mackay system make it unable to subgrade the volume of 

Figure 1. The schematic diagram shows the study processes. A. Patient inclusion and exclusion flowchart, showing four cohorts from three centers 

with the proportion of eosinophilic and noneosinophilic pathological type. *The inclusion criteria for patient recruitment were: (i) oral glucocorticoid, 

and intranasal steroid spray and steroid irrigation treatment were discontinued at least 3 months and 1 month before surgery, respectively; (ii) with-

out acute asthma episode or acute upper airway infection within 1 month before surgery; (iii) not under allergen immunotherapy or biologic treat-

ment; B. Radiology flowchart, with image acquisition, image preprocessing (CT score and CT segmentation), radiomic feature extraction, and radiomic 

feature selection; C. Construction and evaluation of models, including waterfall plot of radiomics model, confusion matrix with box plot of combined 

model, and ROC, nomogram, calibration curve and DCA of pooled cohorts.
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inflammation and insensitive to change, which is important for 

characterizing CRS.

Radiomics, a novel machine learning quantitative image analysis 

method, involves the extraction of high-throughput quantita-

tive features from digitized medical images and has the poten-

tial to reveal disease characteristics that cannot be recognized 

by naked eyes (12,13). Thus, it may overcome the disadvantages 

of Lund–Mackay CT scoring. The radiomics has demonstrated 

promising value in predicting prognosis, gene mutations, and 

pathological changes in malignant tumors and inflammatory 

diseases, e.g. differentiating epidermal growth factor receptor 

mutation status in glioblastoma (14), characterizing intestinal 

fibrosis in Crohn’s disease (15), and predicting the prognosis in 

interstitial lung disease related to systemic sclerosis (16). To date, 

there is no attempt to use radiomics in inflammatory upper 

airway diseases yet. In this study, we aimed to assess the ability 

of CT radiomics with or without the combination of clinical fea-

tures to distinguish eosinophilic from noneosinophilic CRSwNP 

in Chinese patients with multicenter validation.

Methods
Patients and clinical features

This diagnostic study of anonymous data was approved by 

the Ethics Review Committee at each participating institution. 

CRSwNP was diagnosed based on the European guideline (1). All 

the patients had ongoing symptoms after initial attempts on 

medical treatments and underwent endoscopic sinus surgery. 

The details of patients including the eligibility criteria are listed 

in Supplemental Methods. As shown in Figure 1A and Table 

S1, a total of 431 patients were finally analyzed, with 293 from 

Center 1 (Tongji Hospital), 84 from Center 2 (Xiangyang Central 

Hospital), and 54 from Center 3 (Shanxi Bethune Hospital). Pa-

tients from Center 1 were randomly divided into training cohort 

(n = 232) and internal validation cohort (n = 61) at a ratio of 8:2, 

while patients from Center 2 and Center 3 served as external va-

lidation cohort-1 and external validation cohort-2, respectively. 

The data were collected from October 2013 to May 2021.

The demographic and clinical data including age, sex, comor-

bidities, previous sinus surgery history, and blood routine test 

results were retrieved from the medical records anonymously. 

The symptom score was not included in this study because of its 

subjectivity. Nasal polyp samples were taken during surgery and 

subject to routine hematoxylin and eosin staining, and eosi-

nophilic CRSwNP was diagnosed when the percentage of tissue 

eosinophils exceeded 10% of total infiltrating cells as previously 

described (3).

Radiology procedure

The radiology procedure is shown in Figure 1B. Sinus CT scan-

ning was performed 1-3 days before surgery, and the image 

acquisition parameters are shown in Table S2. Lund–Mackay CT 

scores were determined (1), and the ethmoid-to-maxillary sinus 

score (E/M) ratio was calculated as: 

(anterior ethmoid sinus score + posterior ethmoid sinus score) / 

maxillary sinus score (17). 

CT segmentation was performed on the preprocessed images, 

and the region of interest (ROI) of an entire sinonasal cavity was 

semi-automatically delineated using 3D Slicer software (Harvard 

Medical School, version 4.11.0, http://www.slicer.org) (18). Ra-

diomic features (Table S3) were extracted from each ROI using 

the PyRadiomics package (version 3.0, https://pyradiomics.

readthedocs.io/en/latest) (18), and selected sequentially using 

inter-/intra-class correlation coefficients (ICCs), and minimum 

redundancy maximum relevance (mRMR) (19). Details are shown 

in Supplementary Methods.

Model construction

For the radiomics models, least absolute shrinkage, and selec-

tion operator-logistic regression (LASSO-LR) machine learning 

algorithms were used for model construction. LR analysis was 

employed to build models based on the Lund–Mackay CT score, 

clinical characteristics, and the combination of radiomics and 

clinical characteristic. Details are provided in Supplementary 

Methods. 

Model analysis 

Details are provided in Supplementary Methods and Figure 1C. 

The performance indicators and assessments of the models 

mainly include: (i) discrimination: receiver operating characteris-

tic (ROC) curve with the corresponding area under curve (AUC) 

value and DeLong’s test (20)); (ii) calibration: calibration curve and 

Hosmer–Lemeshow test (21); (iii) clinical utility: decision curve 

analysis (DCA) (22), F1 score, net reclassification improvement 

(NRI) values, and integrated discrimination improvement (IDI) 

values (23,24). The accuracy, sensitivity, specificity, positive predic-

tive value (PPV), negative predictive value (NPV), nomogram, 

waterfall plots, confusion matrices and box plots were also 

performed. 

Sample size consideration

The minimum sample size of training and validation cohorts 

were calculated according to previous researches (25,26). Detailed 

information is provided in the Supplementary Methods.

Statistical analysis

All statistical analysis were performed using Python software 

(The Python Software Foundation, version 3.7.4) and R software 

(R Foundation for Statistical Computing, version 4.2.1) (Table S4). 

All statistical tests were 2-tailed, and P < 0.05 was considered 

statistically significant. More information is provided in the Sup-

plementary Methods.

http://www.slicer.org
https://pyradiomics.readthedocs.io/en/latest
https://pyradiomics.readthedocs.io/en/latest
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Table 1. Demographic characteristics of eosinophilic and noneosino-

philic CRSwNP patients.
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Results
Study population

The demographic and clinical characteristics of the patients 

in different cohorts are summarized in Table 1, Table 2, and 

Table S1. There was no significant difference among four study 

cohorts except that external validation cohort-2 displayed 

higher frequencies of atopy and allergic rhinitis, higher blood 

eosinophil/monocyte counts and percentages, and lower ante-

rior ethmoid sinus scores (Table S1). Eosinophilic CRSwNP was 

present in 40.37% of total patients, and 40.09%, 44.26%, 30.95% 

and 51.85% of training cohort, internal validation cohort, exter-

nal validation cohort-1, and external validation cohort-2 (Table 

S1), respectively. Compared with noneosinophilic CRSwNP, 

eosinophilic CRSwNP patients demonstrated significantly higher 

peripheral eosinophil absolute counts and percentages, higher 

E/M ratios in all cohorts, and higher frequencies of asthma 

comorbidity in training and internal validation cohorts (Table 1 

and 2).

Lund–Mackay CT score model

In the analysis of Lund–Mackay CT scores in the training cohort, 

only the E/M ratio was significantly associated with eosinophi-

lic CRSwNP by between-group comparison analysis (P < 0.05), 

which was consistent with the higher ratios in eosinophilic 

CRSwNP than in noneosinophilic CRSwNP (Table 2). Thus, the 

CT score model was established based on E/M ratio. As shown 

in Table 3, the CT score model achieved an AUC of 0.655 (95% 

confidence interval [CI]: 0.588-0.722) in training cohort, 0.649 

(95% CI: 0.514-0.784) in internal validation cohort, 0.640 (95% 

CI: 0.524-0.755) in external validation cohort-1, and 0.705 (95% 

CI: 0.572-0.838) in external validation cohort-2, with high false 

positive rates in all cohorts. 

Radiomics model

In the training cohort, a total of 1316 radiomic features were 

extracted, and 97.188% (1279 of 1316) of them had an inter-

observer ICC value (range: 0.542-1.000) and intra-observer ICC 

value (range: 0.576-1.000) higher than 0.8, indicating a good sta-

bility. After ranking with mRMR method, the top 30 significant 

radiomic features were selected, and LASSO-LR was used for the 

development of radiomics model.

By using LASSO-LR algorithm, 10 key radiomic features with 

non-zero coefficients were further selected and the log (λ) was 

-3.078 (1-SE) (Figure S1). Based on these 10 radiomic features, a 

rad-score was calculated and a radiomics model was construc-

ted with LR as shown in the Supplement. The optimal rad-score’s 

cutoff value was defined as -0.288 according to the Youden’s 

index in the training cohort. The LASSO-LR model achieved 

an AUC of 0.815 (95% CI: 0.759-0.871) in the training cohort, 

and its performance was confirmed in all internal and external 

validation cohorts with comparable AUCs from 0.783 to 0.800 

Data are presented as median and interquartile ranges for continuous 

variables and numbers with percentage for categorical variables, were 

analyzed by Mann-Whitney U-test. Abbreviations: IQR, interquartile 

range. *The P values in red color indicate those less than 0.05. 
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Table 2. Clinical characteristics of eosinophilic and noneosinophilic CRSwNP patients.

C
h

ar
ac

te
ri

st
ic

Tr
ai

n
in

g
 c

o
h

o
rt

 
(n

 =
 2

32
)

In
te

rn
al

 v
al

id
at

io
n

 c
o

h
o

rt
 

(n
 =

 6
1)

Ex
te

rn
al

 v
al

id
at

io
n

 c
o

h
o

rt
-1

 
(n

 =
 8

4)
Ex

te
rn

al
 v

al
id

at
io

n
 c

o
h

o
rt

-2
 

(n
 =

 5
4)

Eo
si

n
o

p
h

ili
c 

C
R

Sw
N

P
 

(n
 =

 9
3)

N
o

n
eo

si
n

o
p

h
il-

ic
 C

R
Sw

N
P

 
(n

 =
 1

39
)

P
*

Eo
si

n
o

p
h

ili
c 

C
R

Sw
N

P
 

(n
 =

 2
7)

N
o

n
eo

si
n

o
p

h
il-

ic
 C

R
Sw

N
P

 
(n

 =
 3

4)

P
*

Eo
si

n
o

-
p

h
ili

c 
C

R
Sw

N
P

 
(n

 =
 2

6)

N
o

n
eo

si
n

o
p

h
il-

ic
 C

R
Sw

N
P

 
(n

 =
 5

8)

P
*

Eo
si

n
o

-
p

h
ili

c 
C

R
Sw

N
P

 
(n

 =
 2

8)

N
o

n
eo

si
n

o
p

h
il-

ic
 C

R
Sw

N
P

 
(n

 =
 2

6)

P
*

Bl
oo

d 
ro

ut
in

e 
te

st

Le
uk

oc
yt

e 
ab

so
lu

te
 c

ou
nt

, 
m

ed
ia

n 
(IQ

R)
, ×

10
^

9/
L

6.
59

 
(5

.4
7-

7.
95

)
6.

14
 

(5
.1

5-
7.

28
)

0.
10

8 
6.

14
 

(5
.3

2-
7.

87
)

6.
45

 
(5

.2
4-

7.
48

)
0.

66
3

6.
05

 
(5

.2
2-

7.
24

)
5.

61
 

(4
.8

5-
6.

78
)

0.
18

8 
7.

15
 

(5
.3

3-
8.

23
)

5.
35

 
(4

.6
8-

7.
75

)
0.

05
9 

N
eu

tr
op

hi
l a

b
so

lu
te

 c
ou

nt
, 

m
ed

ia
n 

(IQ
R)

, ×
10

^
9/

L
3.

36
 

(2
.7

2-
4.

24
)

3.
26

 
(2

.6
8-

4.
06

)
0.

81
8 

3.
16

 
(2

.3
6-

4.
21

)
3.

35
 

(2
.7

0-
4.

11
)

0.
64

2
3.

26
 

(2
.7

5-
3.

80
)

3.
04

 
(2

.4
9-

4.
19

)
0.

61
5 

4.
00

 
(2

.6
2-

4.
37

)
3.

03
 

(2
.4

7-
4.

14
)

0.
18

8 

N
eu

tr
op

hi
l p

er
ce

nt
, m

ed
ia

n 
(IQ

R)
, %

51
.8

 
(4

6.
8-

58
.9

)
54

.0
 

(4
9.

1-
60

.0
)

0.
08

0 
51

.5
 

(4
2.

8-
59

.1
)

57
.3

 
(5

0.
7-

61
.8

)
0.

10
3

52
.8

 
(4

9.
2-

57
.6

)
56

.1
 

(4
8.

6-
62

.7
)

0.
21

4 
52

.8
 

(4
7.

6-
57

.6
)

53
.9

 
(5

0.
6-

58
.2

)
0.

71
5 

Ly
m

p
ho

cy
te

 a
b

so
lu

te
 c

ou
nt

, 
m

ed
ia

n 
(IQ

R)
, ×

10
^

9/
L

2.
03

(1
.6

5-
2.

46
)

2.
10

 
(1

.6
9-

2.
53

)
0.

74
9 

2.
23

 
(1

.8
5-

2.
47

)
2.

25
 

(1
.5

9-
2.

57
)

0.
76

4
2.

22
 

(1
.7

6-
2.

72
)

1.
98

 
(1

.5
3-

2.
51

)
0.

17
7 

2.
06

 
(1

.5
9-

2.
66

)
1.

89
 

(1
.4

4-
2.

36
)

0.
32

5 

Ly
m

p
ho

cy
te

 p
er

ce
nt

, m
ed

ia
n 

(IQ
R)

, %
32

.0
 

(2
6.

6-
38

.8
)

34
.0

 
(2

9.
6-

40
.6

)
0.

08
5 

32
.7

 
(2

8.
7-

39
.1

)
31

.3
 

(2
8.

4-
35

.8
)

0.
71

6
35

.6
 

(3
3.

1-
38

.3
)

33
.6

 
(2

8.
0-

39
.9

)
0.

80
9 

31
.1

 
(2

6.
7-

37
.2

)
34

.3
 

(3
0.

4-
37

.5
)

0.
25

8 

Eo
si

no
p

hi
l a

b
so

lu
te

 c
ou

nt
, 

m
ed

ia
n 

(IQ
R)

, ×
10

^
9/

L
0.

36
 

(0
.2

2-
0.

55
)

0.
13

 
(0

.0
8-

0.
21

)
<

0.
00

1
0.

37
 

(0
.1

8-
0.

66
)

0.
12

 
(0

.0
8-

0.
22

)
<

0.
00

1
0.

34
 

(0
.1

9-
0.

42
)

0.
11

 
(0

.0
8-

0.
22

)
<

0.
00

1
0.

47
 

(0
.3

7-
0.

64
)

0.
23

 
(0

.0
5-

0.
40

)
<

0.
00

1

Eo
si

no
p

hi
l p

er
ce

nt
, m

ed
ia

n 
(IQ

R)
, %

5.
9 

(3
.0

-8
.9

)
2.

4 
(1

.4
-3

.8
)

<
0.

00
1

6.
6 

(2
.9

-1
0.

6)
2.

2 
(1

.2
-3

.7
)

<
0.

00
1

5.
3 

(
2.

5-
7.

3)
2.

3 
(1

.5
-3

.3
)

<
0.

00
1

7.
7 

(6
.0

-9
.4

)
4.

2 
(1

.1
-6

.8
)

0.
00

1 

M
on

oc
yt

e 
ab

so
lu

te
 c

ou
nt

, 
m

ed
ia

n 
(IQ

R)
, ×

10
^

9/
L

0.
45

 
(0

.3
6-

0.
56

)
0.

45
 

(0
.3

7-
0.

57
)

0.
96

3 
0.

49
 

(0
.3

1-
0.

61
)

0.
46

 
(0

.3
5-

0.
66

)
0.

86
7

0.
37

 
(0

.3
0-

0.
46

)
0.

35
 

(0
.3

0-
0.

42
)

0.
67

7 
0.

48
 

(0
.3

6-
0.

56
)

0.
37

 
(0

.2
6-

0.
58

)
0.

24
1 

M
on

oc
yt

e 
p

er
ce

nt
, m

ed
ia

n 
(IQ

R)
, %

7.
2 

(6
.2

-8
.4

)
7.

4 
(6

.4
-9

.2
)

0.
20

9 
6.

8 
(5

.8
-8

.6
)

7.
6 

(6
.3

-8
.6

)
0.

39
1

5.
6 

(5
.2

-6
.7

)
6.

2 
(5

.2
-7

.6
)

0.
28

7 
6.

4 
(5

.3
-7

.8
)

7.
2 

(5
.1

-7
.9

)
0.

81
7 

C
T 

Sc
or

e,
 m

ed
ia

n 
(IQ

R)

Fr
on

ta
l s

in
us

2 
(0

-3
)

2 
(0

-3
)

0.
90

2 
1 

(0
-3

)
2 

(0
-4

)
0.

46
9

2 
(0

-3
.2

5)
2 

(0
.7

5-
4)

0.
50

9 
2 

(0
-3

)
2 

(0
-3

.2
5)

0.
99

3 

A
nt

er
io

r e
th

m
oi

d 
si

nu
s

2 
(2

-4
)

2 
(2

-3
)

0.
11

3 
2 

(2
-3

)
2 

(2
-3

)
0.

92
8

2 
(2

-3
)

2 
(2

-3
)

0.
99

2 
2 

(2
-3

)
2 

(1
-3

.2
5)

0.
06

4 

Po
st

er
io

r e
th

m
oi

d 
si

nu
s

2 
(2

-3
)

2 
(1

-3
)

0.
07

1 
2 

(2
-2

)
2 

(1
-2

)
0.

35
1

2 
(2

-2
)

2 
(1

-2
.2

5)
0.

47
3 

2 
(2

-3
)

2 
(0

.7
5-

3)
0.

05
9 

M
ax

ill
ar

y 
si

nu
s

2 
(2

-3
)

2 
(2

-3
)

0.
10

7 
2 

(2
-2

)
2 

(2
-3

)
0.

14
8

2 
(2

-2
)

2 
(2

-3
)

0.
06

4 
2 

(2
-2

.7
5)

2 
(1

.7
5-

2.
25

)
0.

53
8 

Sp
he

no
id

 s
in

us
1 

(0
-2

)
0 

(0
-2

)
1.

00
0 

1 
(0

-2
)

0.
5 

(0
-2

)
0.

81
7

1.
5 

(0
-2

)
1 

(0
-2

)
0.

88
3 

1 
(0

-2
.7

5)
0.

5 
(0

-2
)

0.
56

5 

O
M

C
4 

(2
-4

)
4 

(2
-4

)
0.

10
0 

4 
(2

-4
)

4 
(2

-4
)

0.
88

0
4 

(4
-4

)
4 

(2
-4

)
0.

09
1 

4 
(4

-4
)

4 
(2

-4
)

0.
09

3 

To
ta

l C
T 

sc
or

e
13

 (9
-1

7)
13

 (7
-1

7)
0.

47
8 

12
 (7

-1
7)

13
.5

 (7
.5

-
17

.3
)

0.
80

7
13

.5
 (1

0-
16

.2
5)

13
.5

 (9
-1

8)
0.

86
5 

13
 (1

0.
25

-
17

.7
5)

11
 (5

.7
5-

16
.2

5)
0.

25
1 

E/
M

2 
(2

-2
.8

3)
2 

(1
.3

-2
.3

)
<

0.
00

1
2 

(2
-2

.5
)

2 
(1

.5
-2

)
0.

04
0

2 
(2

-2
)

2 
(1

.8
75

-2
)

0.
03

5 
2 

(2
-3

)
1.

86
 (1

-2
)

0.
00

8 

Data are presented as median and interquartile ranges for continuous variables and numbers with percentage for categorical variables and were 

analyzed by Mann-Whitney U-test. Abbreviations: IQR, interquartile range; OMC, ostiomeatal complex; E/M, (anterior ethmoid sinus score + posterior 

ethmoid sinus score )/(maxillary sinus score). *The P values in red color indicate those less than 0.05. 
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Table 3. Predictive capacity of the CT score, radiomics, clinical, and combined model.
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Clinical model

The demographic and clinical data including age, sex, comor-

bidities, previous sinus surgery history, and blood routine test 

results were included in between-group comparison analysis, 

and asthma comorbidity, peripheral eosinophil absolute count, 

and eosinophil percentage were found associated with eosinop-

hilic CRSwNP in the training cohort (Table 1 and 2), which was 

consistent with univariate LR analysis (Table S6). However, only 

peripheral eosinophil absolute count independently correlated 

with eosinophilic CRSwNP after backward stepwise multivariate 

Figure 2. Receiver operating characteristic curves of different models in different cohorts. The values of the areas under the curves were presented in 

the figures. 

(Table 3). The waterfall plot in Figure E2 shows the distribution 

of rad-scores and endotypes of CRSwNP in the four cohorts, 

reflecting the good discrimination performance of the LASSO-LR 

radiomics model. Moreover, eosinophilic and noneosinophilic 

CRSwNP demonstrated significant differences in the rad-scores 

in pooled patients with (0.129 [-0.506 to 0.523] vs. -0.652 [-1.206 

to -0.236]) and without (0.002 [-0.466 to 0.446] vs. -0.715 [-1.195 

to -0.331]) prior surgery (Table S5), indicating a stable distin-

guishing ability of rad-scores independent of prior surgery.
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Figure 3. The performance of the combined model. A. Calibration curves 

of the combined model in different cohorts. The diagonal gray dashed 

line indicates a perfect prediction, and the solid lines indicate the perfor-

mance of the models. When the solid line is close to the dotted line, the 

model works well. B-E. The decision curve analysis of different models 

in different cohorts. The gray line represents the assumption that “all 

patients are eosinophilic chronic rhinosinusitis with nasal polyps”, and 

the dashed black line represents the assumption that “none are eosino-

philic chronic rhinosinusitis with nasal polyps”. The combined model 

shows the highest net benefit compared with the other models in a 

larger range of threshold probability, indicating the best clinical utility 

ability.
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agreement between predictive and histologic diagnosis in all 

cohorts.

Clinical utility

Comparing the combined model with the radiomics or clinical 

models, the NRI > 0.5 and IDI > 0.1 in all four cohorts indicated 

a superior reclassification ability of the combined model (Table 

S7), and the F1 scores of the combined model were also superior 

over to other models in all cohorts (Table 3). 

To further demonstrate the net benefit of predictive models 

especially the impact of true positive, the DCA was used to 

compare the benefit of the combined model, radiomics model 

and clinical model in each cohort (Figure 3B-E). This analysis 

showed that all models added net benefit than either the “treat 

all patients as eosinophilic CRSwNP” or “treat none patients as 

eosinophilic CRSwNP” strategy scheme; however, the combined 

model significantly increased the net benefit compared to either 

radiomics model or clinical models over a large range of thres-

hold probability (Figure 3B-E). 

Discussion
Eosinophilic CRSwNP is characterized by predominant type 

2 inflammation and is associated with a poor prognosis after 

endoscopic sinus surgery (5,27), which usually needs more aggres-

sive surgery and postoperative medical treatments. To the best 

of our knowledge, this is the first study to construct a radiomics-

based model for identifying eosinophilic CRSwNP with multi-

center validation. The CT radiomics model was significantly 

superior to conventional CT score model to identify eosinophilic 

CRSwNP, and further combination with the peripheral blood 

eosinophil absolute count achieves a fair prediction perfor-

mance. Our study confers novel insights in a radiomics-based 

approach in endotype identification and personalized treatment 

of CRSwNP. 

CT is the most used modality for CRS diagnosis and conduc-

ted under standard procedure clinically. The Lund–Mackay CT 

scoring system is widely used for grading CRS severity. Some 

studies reported that the E/M ratio was an effective predictor 

of eosinophilic CRSwNP (8), but others not (7,28,29). The reasons for 

those controversial findings may be the subjective nature of 

image interpretation, and the limited sensitivity of Lund–Mac-

kay scoring system due to its semi-quantitative nature and 

narrow scale range. In this study, we found that the predictive 

capacity of E/M ratio for eosinophilic CRSwNP was insufficient 

(Table 2), confirming that the Lund–Mackay scoring system may 

be too simple to capture the heterogeneity of CRSwNP. 

Radiomics, a novel image-based quantitative method, has the 

potential to overcome the limitations of conventional CT scoring 

system. Radiomics has been reported to have improved ability 

to discover the subtle disease heterogeneity, for example, to 

distinguish the composition of different immune cells infiltra-

LR analysis (Table S6). A clinical model based on the peripheral 

eosinophil absolute count provided an AUC of 0.797 (95% CI, 

0.735-0.858) in the training cohort, and its moderate diagnostic 

capacity was validated in internal and external validation co-

horts with AUCs ranging from 0.771 to 0.772 (Table 3). The cutoff 

value was determined to be 0.215 × 109/L in the training cohort. 

There was no significant difference in AUCs between radiomics 

and clinical model in all cohorts as analyzed by DeLong’s test (all 

P > 0.05). 

Combined model

We then explored whether integrating radiological and clinical 

features could achieve better distinguishing efficacy. When 

integrating CT scores and clinical features, the CT scores features 

were removed after backward stepwise multivariate LR analy-

sis. Therefore, we focused on the combination of radiomic and 

clinical features in subsequent analyses. 

The correlation analyses showed that there was no or poor cor-

relations between clinical and radiomic features in the training 

cohort (Figure S3), suggesting that clinical and radiomic features 

are largely independent of each other and capture the different 

dimensional characteristics of CRSwNP. The combined model 

was constructed by integrating rad-score and peripheral eosi-

nophil absolute count using multivariate LR.

Risk - score = 2.140 × rad-score + 6.714 × peripheral eosinophil 

absolute counts - 1.387

The combined model provided a fair discrimination perfor-

mance with an AUC > 0.900 in not only the training cohort but 

also all validation cohorts (Table 3), displaying significant or 

marginally significant improvement over the radiomics and 

clinical model (DeLong’s test, P < 0.05) (Figure 2). The cutoff 

value of the risk-score in the combined model was determined 

to be 0.440 based on the Youden’s index in the training cohort. 

Furthermore, the prediction effect of the combined model was 

evaluated by the confusion matrix and box plots (Figure S4), 

confirming the fair performance for distinguishing eosinophilic 

from noneosinophilic CRSwNP in all the cohorts. The combined 

model achieved comparable efficiency in pooled patients with 

(AUC, 0.907 [95% CI, 0.844-0.970]) and without (AUC, 0.896 [95% 

CI, 0.861-0.930]) prior surgery.

Nomogram and calibration curve

To make the combined model more concise and user-friendly, a 

nomogram was developed based on the rad-score and periphe-

ral eosinophil absolute count with coefficients determined by 

the multivariate LR analysis (Figure S5). The Hosmer–Lemeshow 

test showed good calibration of the developed nomogram in all 

cohorts (P > 0.05). The corresponding calibration curves were 

close to the diagonal dashed line (Figure 3A), indicating a good 
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ted in advanced solid malignant tumors (30). The heterogeneity 

of inflammatory cell profiles in CRSwNP may also lead to the 

differences in image intensity, shape, and texture, which can 

be captured by radiomics. In this study, for the first time, we 

defined the ROI of an entire sinonasal cavity to obtain as much 

information of the disease as possible. We developed a radio-

mics model consisting of 10 key radiomic features to identify 

eosinophilic CRSwNP by using LASSO-LR algorithm. The AUC 

of the radiomics model was 0.815 (95% CI: 0.759-0.871) in the 

training cohort, which was confirmed in all validation cohorts 

(AUCs, ranging from 0.783 to 0.800), and significantly improved 

compared to the CT score model. It indicates that the radiomics 

is superior to conventional Lund–Mackay CT score in capturing 

disease features. We found these 10 radiomic features can be 

grouped into 3 categories and provide potentially interpretable 

information: A) first-order features (minimum, maximum, mean, 

median and skewness), which represent the gray values of ROI 

and thus may indicate opacification; B) shape feature (flatness), 

which represents the shape of ROI; C) texture features (IMC1 and 

IMC2), which represent the quantification of texture complexity 

and may reflect the composition of mucosal inflammation such 

as edema and immune cell infiltration. In order to avoid the bias 

caused by prior surgery, we excluded bone structure during 

threshold segmentation and demonstrated significant diffe-

rence in the rad-scores between eosinophilic and noneosinop-

hilic CRSwNP in both patients with and without prior surgery. 

Therefore, the validity of our CT radiomics model is unlikely 

significantly influenced by prior surgery. 

In this study, although the radiomics model yielded an enhan-

ced performance compared to conventional Lund–Mackay CT 

score, its effectiveness was moderate (AUC < 0.850). Our findings 

are consistent with previous studies employing radiomics to 

discriminating the pathological features of diseases. Sun et al. 

reported that the ability of the radiomic signatures to classify 

high versus low abundance of CD8 cell infiltration in advanced 

solid tumors was moderate with an AUC of 0.74 (30). Braman et al. 

developed a radiomics signature from intra-tumoral region to 

stratify the human epidermal growth factor receptor 2-enriched 

and nonenriched breast cancer and achieved a mean AUC of 

0.76 (31). Collectively, the findings of our study and other studies 

indicate that although radiomics has improved ability to capture 

the complexity of diseases compared to conventional radiolo-

gical evaluation, it may be unable to reflect all the aspects of 

the complex diseases. It is therefore necessary to incorporate 

additional information of other dimensions of the diseases to 

further improve the performance of the radiomics-based model. 

Previously, some clinical characteristics including asthma co-

morbidity, peripheral blood eosinophil count, and loss of smell 

symptom score have been discovered associated with eosinop-

hilic CRSwNP (2,6-9,32,33). In this study, to avoid the bias introduced 

by highly subjective parameters, we decided not to include the 

symptom score in our model. Consistent with previous studies 
(7,9,33), peripheral eosinophil absolute count was identified as an 

independent predictor for eosinophilic CRSwNP in our study. 

The clinical model achieved a performance comparable to radio-

mics model, but with an AUC value still below 0.85. Notably, we 

discovered no or poor correlations between radiomic features 

and clinical characteristics, suggesting that radiomics and clini-

cal features reflect different traits of CRSwNP. We therefore con-

structed a combined model comprising radiomic features and 

peripheral eosinophil absolute count and found that the com-

bined model achieved a robust performance with AUCs ranging 

from 0.900 to 0.903 in all cohorts. By comparing the ROC, DCA, 

F1 score, NRI and IDI, the performance of the combined model 

was found superior to the solo radiomics or clinical model. 

The combined model only requires sinus CT scan and blood 

routine tests, which are standardized, easily accessible, and exert 

no extra burden or cost to the patients. We are trying to build a 

cloud platform which will allow physicians to upload sinus CT 

images and complete the segmentation of CT images through 

an internal loop plugin. The software can then automatically 

complete the radiomics feature extraction and calculation of 

the risk-score to predict the probability of eosinophilic CRSwNP. 

Thus, hopefully, our model can provide a noninvasive, reliable, 

simplified, and clinically accessible tool to identify eosinophilic 

CRSwNP with high efficacy. 

Some limitations have to be addressed in this study. First, the 

enrolled CRSwNP patients in this study were those refractories 

to medical treatment and underwent sinus surgery, which can-

not represent the whole population of CRSwNP. Nevertheless, 

these patients are the subgroup most deserving of tailored 

treatments. Second, although the combined model has been 

validated in multicenter cohorts, further prospective studies 

with larger sample sizes are still needed to improve the accuracy 

and robustness of the model. Third, some characteristics vary 

between CRSwNP patients in Asian and Western countries. Eosi-

nophilic CRSwNP and asthma comorbidities are more common 

in Western countries (34), so the extrapolation of our model to 

other populations should be validated with further investigati-

ons. Nevertheless, in our study, the external validation cohort-2 

had higher atopy and AR comorbidity frequency and peripheral 

blood eosinophil number (Table S1), suggesting an increased 

eosinophilic inflammation in this cohort. The validation of the 

radiomics-based model in this cohort suggests the potential 

value of our model in a more eosinophilic patient population. 

Fourth, the segmentation method used in this radiomics study 

remains somewhat time-consuming. Our future goal is to 

achieve complete automatic segmentation of ROIs using deep 

learning algorithms, which may further reduce the time required 

by the model and facilitate its uptake. However, many samples 

and extensive calculations are required to achieve this goal.
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quencies of atopy and allergic rhinitis, higher blood eosinophil/

monocyte counts and percentages, and lower anterior ethmoid 

sinus scores (Table S1). The training cohort, including 93 eosi-

nophilic and 139 noneosinophilic CRSwNP patients, was used to 

construct the prediction model and determine the optimal para-

meters. The internal validation cohort including 27 eosinophilic 

and 34 noneosinophilic CRSwNP patients, external validation 

cohort-1 including 26 eosinophilic and 58 noneosinophilic 

CRSwNP patients, and external validation cohort-2 including 

28 eosinophilic and 26 noneosinophilic CRSwNP patients, were 

used to test the prediction model without exposure in the 

modeling process. 

S2. Radiology procedure
Image acquisition

Enrolled patients in the three hospitals underwent standard 

CT scans using multi-detector row systems. The versions of the 

instruments and parameters are shown in Table S2. The CT rea-

ding was performed on Picture Archiving and Communication 

Systems (PACS) workstation with adjustable windows, where 

tri-plane images (axial, coronal and sagittal) were viewed simul-

taneously and followed by crosshairs for detection and locali-

zation of sinus inflammation. The original Digital Imaging and 

Communications in Medicine (DICOM) images were obtained for 

3D reconstruction and subsequent analysis.

Lund–Mackay CT scores

The CT scores were graded by experienced otolaryngologists, 

who were blinded to the clinical and pathological data. Ac-

cording to Lund–Mackay system (1), the left and right maxil-

lary sinus, anterior and posterior ethmoid sinus, frontal sinus, 

sphenoid sinus, and osteomeatal complex (OMC) were semi-

quantified based on the degree of opacification. Total CT scores 

were the summary of the scores of left and right sinuses and 

OMC. The ethmoid-to-maxillary (E/M) ratio was calculated as: 

(anterior ethmoid sinus score + posterior ethmoid sinus score) / 

maxillary sinus score (6).

CT segmentation

The image segmentation was performed by 2 experienced 

radiologists, who were blinded to clinical and pathological data. 

As image preprocessing, the images were resampled to isotro-

pic voxels on the 1.25 × 1.25 × 1.25 mm side using a B spline 

interpolator and normalized to the gray value of the image 

centered on the image standard deviation value to ensure the 

consistency of subsequent analyses (7). Then, region of interest 

(ROI) was obtained by semi-automatic threshold segmentation 

method using 3D Slicer (Harvard Medical School, version 4.11.0, 

http://www.slicer.org) (8), where the main algorithmic functions 

SUPPLEMENTARY MATERIAL

S1. Patients and clinical features
This multicenter study of anonymous data included 3 cen-

ters and was approved by Ethics Review Committee at each 

participating institution. Chronic rhinosinusitis (CRS) with nasal 

polyps (CRSwNP) was diagnosed according to the international 

guideline (1). All the patients had ongoing symptoms after initial 

attempts on medical treatments and underwent endoscopic 

sinus surgery. The inclusion criteria for patient recruitment were: 

(i) oral glucocorticoid, and intranasal steroid spray and steroid 

irrigation treatment were discontinued at least 3 months and 

1 month before surgery, respectively; (ii) without acute asthma 

episode or acute upper airway infection within 1 month before 

surgery; (iii) not under allergen immunotherapy or biologic 

treatment. The exclusion criteria for patient recruitment were: 

(i) fungal sinusitis; (ii) antrochoanal polyps; (iii) cystic fibrosis, 

vasculitis, primary ciliary dyskinesia, or immunodeficiency; 

(iv) odontogenic maxillary sinusitis; (v) patients with history of 

craniocerebral trauma or sinonasal tumours. 

Routine blood tests and sinus computed tomography (CT) scans 

were completed in 1-3 days before surgery. The radiological 

exclusion criteria were: (i) insufficient CT quality (e.g., metal 

artifacts, motion artifacts, and lack of intact CT scan of sinuses); 

(ii) slice thickness more than 2.5 mm. 

A total of 431 patients were finally analyzed (Table S1), with 293 

from Center 1 (Tongji Hospital), 84 from Center 2 (Xiangyang 

Central Hospital), and 54 from Center 3 (Shanxi Bethune Hospi-

tal). Patients from Center 1 were randomly divided into training 

cohort (n = 232) and internal validation cohort (n = 61) at a 

ratio of 8:2, while patients from Center 2 and Center 3 served as 

external validation cohort-1 and external validation cohort-2, 

respectively. 

The demographic and clinical data including age, sex, comor-

bidities, previous sinus surgery history, and blood routine test 

results were retrieved from the medical records anonymously. 

The symptom score was not included in this study because of 

its subjectivity. Nasal polyp samples were taken during sur-

gery and subjected to routine hematoxylin and eosin staining. 

Eosinophilic CRSwNP was diagnosed when the percentage of 

tissue eosinophils exceeded 10% of the total infiltrating cells as 

previously described (2). Asthma was diagnosed according to the 

Global Initiative for Asthma (GINA) guidelines (3). Allergic rhinitis 

was diagnosed according to the Allergic Rhinitis and its Impact 

on Asthma (ARIA) guidelines (4). Atopic status was evaluated by 

skin prick test to a standard panel of aeroallergens or by using 

the ImmunoCAP Phadiatop test (Phadia, Uppsala, Sweden) for 

detecting immunoglobulin E antibodies against various com-

mon inhalant allergens (5).

There was no significant difference among four study cohorts 

except that external validation cohort-2 displayed higher fre-

http://www.slicer.org


145

Identification of eosinophilic CRSwNP by radiomics

used were: (i) brush paint; (ii) threshold segmentation; (iii) level 

tracing; (iv) median smoothing. 

The brush paint was used to outline the entire sinonasal cavity 

edge as the ROI. The anterior boundary of the nasal cavity was 

defined as the anterior edge of the nasal bone, while the poste-

rior boundary of the nasal cavity as the choanae, and the other 

boundaries of the nasal cavity and the borders of all the sinuses 

were defined as the sinonasal anatomical margins. Threshold 

segmentation was obtained (visualized by masking) for pixels 

in the image with values between upper and lower thresholds. 

The degree of radiation attenuation of high density of bone 

is different from that of air cavities and soft tissue images. The 

bone was excluded during threshold segmentation to avoid 

bias caused by prior surgery in some patients and influence 

on subsequent feature extraction (e.g., first-order features and 

texture features). Level tracing interpolated the gray values of 

pixel points to form a regular grid and got the coordinates and 

value of each grid point, to estimate the positions of the contour 

points and further standardize the organization of edge con-

tours. Median smoothing used median interpolation algorithm 

to remove small details while keeping smooth contours mostly 

unchanged and set kernel size 2.5 mm to get a more continuous 

and smooth segmentation result. The CT segmentation was 

shown in Figure 1A.

Radiomic feature extraction

The feature extraction was implemented with PyRadiomics 

(version 3.0, https://pyradiomics.readthedocs.io/en/latest), an 

open-source python package for the extraction of radiomic fea-

tures from medical imaging by referring to the Image Biomarker 

Standardization Initiative (IBSI) (9,10). As showed in Table S3, a 

total of 1316 radiomic features were extracted from ROI, inclu-

ding: (i) 18 first-order statistics; (ii) 24 shape-based; (iii) 24 Gray 

Level Cooccurrence Matrix (GLCM); (iv) 16 Gray Level Run Length 

Matrix (GLRLM); (v) 16 Gray Level Size Zone Matrix (GLSZM); (vi) 

5 Neighboring Gray Tone Difference Matrix (NGTDM); (vii) 14 

Gray Level Dependence Matrix (GLDM). In addition to the origi-

nal features, we also extract features from images after wavelet 

filtration and Laplacian of Gaussian (LoG) filtration. For the wa-

velet filter, multidimensional convolution can be avoided by ap-

plying different weights to the low or high frequency sub-bands. 

The convolution was carried out with the low (L)-/high (H)-pass 

“Coiflet 1” wavelet filter along the x-/y-direction, yielding 6 diffe-

rent combinations of decompositions (LHL, LHH, LLH, HLL, HHL 

and HLH), as compared to the low- or high-frequency sub-bands 

(LLL and HHH). For the LoG filter, images were filtered using a 

3D LoG filter implemented and by changing sigma values to 0.5, 

1.0, 1.5, 2.0 and 2.5 mm to suppress noise, yielding another 5 

derived images. Here, δ = 0.5 and δ = 1.0 was used to represent 

fine textures (about 4 pixels or 2.72mm width features), δ = 1.5 

and δ = 2.0 were used to represent medium textures (about 

6-10 pixels or 4.08-6.8 mm width features), and δ = 2.5 was used 

to represent coarse textures (about 12 pixels or 8.16 mm width 

features) (11). Detailed information about the feature names, 

meanings and mathematical formulas can be obtained from the 

documentation at http://pyradiomics.readthedocs.io/en/latest. 

Radiomic feature selection

Features were selected sequentially by using inter-/intra-class 

correlation coefficients (ICCs) (12), and minimum redundancy 

maximum relevance (mRMR) (13). First, the ICCs algorithm, a 

statistical measure between 0 and 1 indicating null and perfect 

reproducibility, was used to evaluate inter- and intra-class 

variation in radiomic feature extraction. Here, we choose the ICC 

greater than 0.80 as high agreement. To verify inter-class agree-

ment, 30 patients were randomly chosen for manual segmen-

tation by two radiologists (reader-1 and reader-2) to delineate 

the boundary of each primary ROI, and the radiomic features 

were extracted. After inter-class ICC calculation and analysis, all 

segmentations were completed by reader-1. To verify intra-class 

agreement, three months after the initial segmentation, 50 

training datasets were randomly selected and re-segmented 

by reader-1, then intra-class ICC was calculated. Finally, stable 

features with both of inter- or intra-class ICC value greater than 

0.8 were reserved, and other features were filtered out. Then, 

mRMR algorithm was used to calculate the mutual information 

between radiomic features and the endotypes of CRSwNP. The 

maximum number of predictors should be approximately equal 

to 1/3 of the smallest population in the training cohort, there-

fore, the 30 highest ranked features in the mRMR were retained. 

Radiomic feature selection was shown in Figure 1, A-C.

S3. Model construction
Four types of models were constructed: the CT score model, 

radiomics model, clinical model, and combined model. In the 

process of model building within the training cohort, all the 

validation cohorts were not exposed and only used for the eva-

luation of the model’s performance.

CT score model

The CT score model was constructed using logistic regression 

(LR) algorithm. Each individual sinus Lund–Mackay CT scores 

and E/M ratio were analyzed by between-group comparison 

analysis and univariate analysis to determine the associations 

with eosinophilic CRSwNP. Then, the CT score features associ-

ated with eosinophilic CRSwNP were used to develop the CT 

score model by LR.

Radiomics model

The radiomics models were constructed using least absolute 

shrinkage and selection operator (LASSO) and LR algorithm (14), 

a widely applicable high-dimensional data regression machine 

https://pyradiomics.readthedocs.io/en/latest
http://pyradiomics.readthedocs.io/en/latest
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learning method for radiomics. In the training cohort, we ap-

plied the LASSO algorithm to select the best robust predictive 

features from the 30 extracted radiomic features, and performed 

penalty parameter tuning by 10-fold cross-validation as showed 

in Figure 1, D. The LASSO filter retained less than 10 features 

from the 30 top features generated by mRMR and developed 

radiomics model by LR. We calculated the respective weighted 

regression coefficients of the selected features to obtain a rad-

score representing the probability of eosinophilic endotype for 

each patient:

         

      Rad - score = k
1
 X

1
 + k

2
 X

2
 + ... + k

i
 X

i
 + b

Where X
i
 is the radiomic feature, k

i
 is the LR coefficient of X

i
, and 

b is the intercept of the LR.

Clinical model

The clinical model was constructed using the LR algorithm. 

After between-group comparison and univariate analysis, the 

significant clinical features were analyzed by backward stepwise 

multivariate LR analysis to identify the independent predictors 

of eosinophilic CRSwNP. The independent predictors were used 

to develop the clinical model by LR (15). 

Combined model

The combined model was constructed by backward stepwise 

multivariate LR based on the rad-score and clinical variables. 

We calculated the respective weighted regression coefficients 

of the selected variables to obtain a risk-score representing the 

probability of eosinophilic endotype for each patient:

     

      Risk-score = k
1
clinical - var

1 
+ k

2
clinical - var

2 
+ ... + k

i
rad-score + b

Where clinical-var represents the clinical variable, rad-score is 

calculated in the radiomics model, k
i
 is the LR coefficient, and b 

is the intercept of LR.

S4. Model analysis
Discrimination

The discrimination was evaluated through receiver operating 

characteristic (ROC) with the corresponding area under curve 

(AUC) value (16,17). For different models, a larger AUC implies bet-

ter predictive performance, while a P < 0.05 from the DeLong’s 

test implies a significant difference in the predictive effective-

ness between two models for the statistical comparison of AUCs. 

The horizontal axis of ROC represents the false positive rate (FPR 

= 1- specificity) and the vertical axis of ROC represents the true 

positive rate (TPR = sensitivity) of the model. An optimal cutoff 

value was chosen according to the maximum Youden’s index in 

the training cohort.

       Younden's index = (sensitivity+specificity)-1

Accuracy, sensitivity, specificity, positive predictive value and 

negative predictive value were calculated.

Calibration

The calibration was evaluated through the Hosmer–Lemeshow 

test with a calibration curve (18), and P > 0.05 means that the 

model is well calibrated. The horizontal coordinate of the cali-

bration curve represents the probability predicted by our model 

and the vertical coordinate of the calibration curve represents 

the actual probability. The closer the slope of the curve is to 1, 

the better agreement between the predicted outcomes and the 

real pathological endotypes.

Clinical utility

For prediction models, decision curve analysis (DCA) was used 

to assess the clinical validity, which integrates and compares the 

clinical effectiveness of models by calculating the range of net 

benefits at different threshold probabilities: 

      Net benefit = (True positives) / n) - (P
t 
/ (1-P

t
)  × (False positives / n)

Where n is the total number of patients and P
t
 is the risk thres-

hold. Net benefit was used to assess the benefit that patients 

can get from the prediction model. The larger net benefit means 

better clinical utility.

F1 score was used to measure the accuracy of binary classifica-

tion model. The larger F1 score means the better model, which 

was calculated as:

      F
1 

= 2× (precision×recall) / (precision+recall)

Net reclassification improvement (NRI) value, and integrated 

discrimination improvement (IDI) value were used to calculate 

the proportion of patients that were correctly reclassified (19), 

and to quantify the improvement of diagnostic accuracy of the 

new model over the original one. NRI and IDI > 0 means the new 

model has improved in clinical use. The waterfall plots, confu-

sion matrixes and box plots were also performed.

S5. Sample size consideration
To avoid model over-fitting, the number of predictors should be 

bigger than 1/20–1/8 of the sample size in the training cohort 
(20). In our study, 10 radiomic features were finally selected to 

build the radiomics model, while the sample size of the training 

cohort was 232 (with 93 eosinophilic CRSwNP patients). There-

fore, the sample size of training cohort was acceptable.

Validation cohorts 

The minimum sample size of validation was calculated as fol-
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lowing formula (21):

Letting the noneosinophilic CRSwNP patients be Group A and 

eosinophilic CRSwNP patients as Group B, μ represents the 

mean in each group, and the validation cohorts’ minimum sam-

ple size and power are calculated respectively:

      N
A
= ((n

A
+n

B
) / n

B
) (σ (z

(1-α⁄2)
+ z

(1-β) 
) / (μ

A 
- μ

B
))2

      N
B 

= ((n
A
+n

B 
/ n

A
) (σ (z

(1-α⁄2) 
+ z

(1-β) 
)/(μ

A 
- μ

B
))2

      1 - β = Φ(z-z
(1-α⁄2)

) + Φ (-z-z
(1-α⁄2)

 ), z = (μ
A 

- μ
B
)/(σ√(1/n

A
 +1/n

B
 ))

where, n is the sample size in the training cohort and N is the 

sample size in the validation cohort, Φ is the standard normal 

distribution function, α is the Type I error, β is the Type II error, 

1-β is the power, σ is the variance, while z
(1-α⁄2)

 and z
(1-β)

 are ob-

tained by consulting the normal distribution table.

Under the desired two-sided significance level of α= 0.05 and 

power of 1-β=0.95, the sample size needed in the validation 

cohort was calculated to be 23 for noneosinophilic CRSwNP and 

16 for eosinophilic CRSwNP. All the validation cohorts met the 

sample size requirements.

S6. Statistical analysis
All statistical analyses were performed using Python software 

(The Python Software Foundation, version 3.7.4) and R software 

(R Foundation for Statistical Computing, version 4.2.1). All the 

packages used in this study are detailed in Table E4. Data distri-

bution was tested for normality using the Kolmogorov-Smirnov 

test. For continuous variables, t-/t'-test or Mann-Whitney U test 

was used the analyzed the difference between 2 groups depen-

ding on data normality, while ANOVA test or Kruskal-Wallis H 

test was used to assess significant among more than 2 groups. 

For categorical variables, fisher's exact test or chi-square test/

chi-square test with Yates' was used to compare the difference 

between groups. 

S7. Radiomics score (rad-score) calculation formula
Rad-score = (-0.173×Wavelet (LLH)_Firstorder_Mean)+

 (-0.095×Wavelet (HLL)_GLCM_IMC2)+

 (-0.043×Original_Firstorder_Minimum)+

 (-0.034×Wavelet (LHL)_Firstorder_Skewness)+

 (-0.020×Original_Shape_Flatness)+

 (0.054×Wavelet (HHH)_Firstorder_Median)+

 (0.127×Wavelet (HLH)_Firstorder_Mean)+

 (0.192×Original_Firstorder_Maximum)+

 (0.429×Wavelet (HHH)_Firstorder_Mean)+

 (0.460×Wavelet (HLH)_GLCM_IMC1)-0.451

Among them, we divided these 10 features into 3 categories and 

provide potential interpretable clinically relevant information: A) 

first-order features; B) shape feature; C) texture features. 

The code used for analysis were uploaded on GitHub (https://

github.com/Yukeyuzhang/CRS_Radiomics.git). The raw data 

of this study are available upon reasonable request from the 

authors.
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Figure S1.  Basolateral viral release over time of Calu-3 cells (A) and pNECs (B).

Figure S2. Rad-score for each patient in every cohort. The horizontal coordinate represents each patient and the vertical coordinate represents the 

rad-score calculated from the radiomic characteristics of each patient through the LASSO-LR method. ECRSwNP patients are represented in red, while 

NECRSwNP patients in blue. 

20. Dong D, Fang MJ, Tang L, et al. Deep learn-
ing radiomic nomogram can predict the 
number of lymph node metastasis in locally 
advanced gastric cancer: an international 

multicenter study. Ann Oncol 2020; 31: 912-
920.
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Sample size calculations in clinical research, 
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Figure S3. The heatmap of Spearman’s correlation between radiomic features, Lund–Mackay CT scores and clinical features in the training cohort. The 

color scheme and P value symbols showing the degree of relevance are displayed in the lower right corner. The 30 radiomics features on the right 

were selected by mRMR, and the 10 features in red colour were selected by LASSO from 30 features.
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Figure S4. Confusion matrix and box plots demonstrating the evaluation of the combined model for discriminating eosinophilic and noneosinophilic 

CRSwNP in every cohort. For the confusion matrix, the horizontal axis represents the actual pathological diagnosis of the patient, while the vertical 

axis represents the prediction by the combined model, and the colour scheme on the right indicates the numbers of patients. For the box plot, the 

horizontal axis represents the actual pathological diagnosis of the patient, and the vertical axis represents the risk-scores calculated by the combined 

model.

Figure S5. The nomogram developed on the basis of the combined model. 



151

Identification of eosinophilic CRSwNP by radiomics

Table S1. Demographic and clinical characteristics of patients in different study cohorts.

Characteristics Training cohort 
(n = 232)

Internal validation 
cohort 
(n = 61)

External validation 
cohort-1 
(n = 84)

External validation 
cohort-2 
(n = 54)

P*

ECRSwNP, n (%) 93 (40.09) 27 (44.26) 26 (30.95) 28 (51.85) 0.093

Age, median (IQR), years 45.0 (28.0-54.0) 42.0 (27.5-54.5) 50.0 (41.0-56.0) 43.5 (28.8-55.3) 0.060

Sex, male, n (%) 154 (66.38) 43 (70.49) 61 (72.62) 40 (74.07) 0.578

Environment, city, n (%) 186 (80.17) 48 (78.69) 60 (71.43) 36 (66.67) 0.111

Smoking habits, n (%) 46 (19.83) 12 (19.67) 18 (21.43) 13 (24.07) 0.908

Drinking habits, n (%) 41 (17.67) 10 (16.39) 21 (25.00) 13 (24.07) 0.367

Prior sinus surgery, n (%) 57 (24.57) 12 (19.67) 12 (14.29) 13 (24.07) 0.246

Allergic rhinitis, n (%) 51 (21.98) 12 (19.67) 15 (17.86) 22 (40.74) 0.010

Asthma, n (%) 36 (15.52) 11 (18.03) 11 (13.10) 11 (20.37) 0.677

Atopy, n (%) 66 (28.45) 14 (22.95) 15 (17.86) 25 (46.30) 0.003

Blood routine examination

Leukocyte absolute count, 
median (IQR), ×10^9/L

6.25 (5.38-7.45) 6.41 (5.31-7.70) 5.76 (4.98-6.89) 6.55 (4.95-7.93) 0.148

Neutrophil absolute count, 
median (IQR), ×10^9/L

3.30 (2.70-4.15) 3.26 (2.70-4.14) 3.15 (2.54-4.10) 3.45 (2.53-4.31) 0.728

Neutrophil percent, 
median (IQR), %

52.60 (47.73-59.30) 54.40 (46.80-60.50) 55.60 (48.80-60.63) 53.45 (48.95-57.73) 0.629

Lymphocyte absolute count, 
median (IQR), ×10^9/L

2.06 (1.68-2.48) 2.23 (1.68-2.50) 2.04 (1.57-2.53) 1.97 (1.55-2.51) 0.697

Lymphocyte percent, 
median (IQR), %

33.45 (28.43-39.55) 32.00 (28.70-38.60) 34.70 (28.58-39.23) 32.80 (28.45-37.33) 0.557

Eosinophil absolute count, 
median (IQR), ×10^9/L

0.18 (0.10-0.37) 0.19 (0.10-0.46) 0.16 (0.09-0.31) 0.40 (0.18-0.56) 0.002

Eosinophil percent, 
median (IQR), %

3.00 (1.60-6.00) 2.90 (1.55-6.70) 2.65 (1.63-4.98) 6.30 (2.65-8.83) 0.003

Monocyte absolute count, 
median (IQR), ×10^9/L

0.45 (0.36-0.56) 0.47 (0.34-0.63) 0.35 (0.30-0.44) 0.45 (0.30-0.57) <0.001

Monocyte percent, 
median (IQR), %

7.35 (6.26-8.90) 7.20 (6.00-8.60) 5.80 (5.20-7.38) 6.85 (5.30-7.83) <0.001

CT Score, median (IQR)

Frontal sinus 2 (0-3) 1 (0-3.5) 2 (0.25-4) 2 (0-3) 0.420

Anterior ethmoid sinus 2 (2-4) 2 (2-3) 2 (2-3) 2 (2-3) 0.002

Posterior ethmoid sinus 2 (2-3) 2 (1-2) 2 (2-2) 2 (1.75-3) 0.395

Maxillary sinus 2 (2-3) 2 (2-2) 2 (2-3) 2 (2-2.25) 0.149

Sphenoid sinus 1 (0-2) 1 (0-2) 1 (0-2) 1 (0-2) 0.924

OMC 4 (2-4) 4 (2-4) 4 (2-4) 4 (2-4) 0.326

Total CT score 13 (8-17) 13 (7.5-17) 13.5 (10-18) 12 (8.75-17.25) 0.659

E/M 2 (1.7-2.5) 2 (1.5-2.17) 2 (1.3-2) 2 (1.46-2.5) 0.108

Abbreviations: ECRSwNP, eosinophilic chronic rhinosinusitis with nasal polyps; IQR, interquartile range; OMC, ostiomeatal complex; E/M, 

(anterior ethmoid sinus score + posterior ethmoid sinus score) / (maxillary sinus score). 

Data are presented as median and interquartile ranges and were analyzed by Kruskal-Wallis H test. *The P values in red color indicate those less than 

0.05.
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Parameters Center 1:
Wuhan Tongji Hospital

Center 2:
Xiangyang 
Central Hospital

Center 3:
Shanxi 
Bethune Hospital

CT
version

Spectral CT 
(Discovery CT 
750 HD scanner, 
GE Healthcare, 
USA)

Spectral CT 
(Brilliance iCT, 
ROYAL PHILIPS, 
Netherlands)

Spectral CT 
(SOMATOM Definition 
AS+, 
Siemens Healthineers, 
Germany)

Spectral CT 
(uCT510 scanner, 
United Imaging, 
China)

Spectral CT 
(SOMATON sensa-
tion64, 
Siemens Healthineers, 
Germany

CT 
tube voltage

Spectral imaging 
mode switching 
between 120 kVp 
and 140 kVp

120kVp 120kVp 120kVp 120kVp

Image matrix 512×512 512×512 512×512 512×512 512×512

Field of view 500×500 mm 500×500 mm 500×500 mm 500×500 mm 500×500 mm

Reconstruction image 
thickness

0.625 mm 1.25 mm 2.5 mm 1.0 mm 0.625 mm

Table S2. The image acquisition parameters in every medical center.

Table S3. Extracted radiomic features.

Group Subgroup Radiomic features

Firstorder features -- Energy, Total Energy, Entropy, Minimum, 10th percentile, 90th percentile, Maximum, Mean, Median, Inter-
quartile Range, Range, Mean Absolute Deviation (MAD), Robust Mean Absolute Deviation (rMAD), Root 
Mean Squared (RMS), Skewness, Kurtosis, Variance, Uniformity

Shape features -- Mesh Volume, Voxel Volume, Surface Area, Surface Area to Volume ratio, Sphericity, Maximum 2D diame-
ter (Slice), Maximum 2D diameter (Column), Maximum 2D diameter (Row), Major Axis Length, Minor Axis 
Length, Least Axis Length, Elongation, Flatness, Maximum 3D diameter

Texture features Gray Level 
Cooccurrence 
Matrix
(GLCM)

Autocorrelation, Joint Average, Cluster Prominence, Cluster Shade, Cluster Tendency, Contrast, Correlati-
on, Difference Average, Difference Entropy, Difference Variance, Joint Energy, Joint Entropy, Informational 
Measure of Correlation (IMC) 1, Informational Measure of Correlation (IMC) 2, Inverse Difference Moment 
(IDM), Maximal Correlation Coefficient (MCC), Inverse Difference Moment Normalized (IDMN), Inverse 
Difference (ID), Inverse Difference Normalized (IDN), Inverse Variance, Maximum Probability, Sum Average, 
Sum Entropy, Sum of Squares

Gray Level 
Run Length 
Matrix (GLRLM)

Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray Level Non-Uniformity (GLN), Gray Level Non-
Uniformity Normalized (GLNN), Run Length Non-Uniformity(RLN), RUn Length Non-Uniformity Normali-
zed (RLNN), Run Percentage (RP), Gray Level Variance (GLV), Run Variance (RV), Run Entropy (RE), Low Gray 
Level Run Emphasis (LGLRE), High Gray Level Run Emphasis (HGLRE), Short Run Low Gray Level Emphasis 
(SRLGLE), Short Run High Gray Level Emphasis (SRHGLE), Long Run Low Gray Level Emphasis (LRLGLE), 
Long Run High Gray Level Emphasis (LRHGLE)

Gray Level 
Size Zone 
Matrix 
(GLSZM)

Small Area Emphasis (SAE), Large Area Emphasis (LAE), Gray Level Non-Uniformity (GLN), Gray Level Non-
Uniformity Normalized (GLNN), Size- Zone Non-Uniformity (SZN), Size-Zone Non-Uniformity Normalized 
(SZNN), Zone Percentage (ZP), Gray Level Variance (GLV), Zone Variance (ZV), Zone Entropy (ZE), Low 
Gray Level Zone Emphasis (LGLZE), High Gray Level Zone Emphasis (HGLZE), Small Area Low Gray Level 
Emphasis (SALGLE), Small Area High Gray Level Emphasis (SAHGLE), Large Are Low Gray Level Emphasis 
(LALGLE), Large Area High Gray Level Emphasis (LAHGLE)

Neighboring 
Gray Tone 
Difference 
Matrix (NGTDM)

Coarseness, Contrast, Busyness, Complexity, Strength

Gray Level 
Dependence 
Matrix (GLDM)

Small Dependence Emphasis (SDE), Large Dependence Emphasis (LDE), Gray Level Non-Uniformity (GLN), 
Dependence Non-Uniformity (DN), Dependence Non-Uniformity Normalized (DNN), Gray Level Variance 
(GLV), Dependence Variance (DV), Dependence Entropy (DE), Low Gray Level Emphasis (LGLE), High Gray 
Level Emphasis (HGLE), Small Dependence Low Gray Level Emphasis (SDLGLE), Small Dependence High 
Gray Level Emphasis (SDHGLE), Large Dependence Low Gray Level Emphasis (LDLGLE), Large Dependence 
High Gray Level Emphasis (LDHGLE)

LoG filtered 
Features *

-- LoG (δ = 0.5)_x, LoG (δ = 1.0)_x, LoG (δ = 1.5)_x, LoG (δ = 2.0)_x, LoG (δ = 2.5)_x

Wavelet features * -- Wavelet (LLL)_x, Wavelet (LLH)_x, Wavelet (LHL)_x, Wavelet (LHH)_x, Wavelet (HLL)_x, Wavelet (HLH)_x, 
Wavelet (HHL)_x, Wavelet (HHH)_x

* x denotes the first-order statistics features and the statistics-based textural features listed above. 
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Software Purposes Packages Functions Versions

Python Data import “Path” Path () 15.1.2

Data analysis, time series, and statistics “pandas” pandas.read_csv (), pandas.read_excel (), 
pandas.concat ()

1.2.4

Array computing “numpy” np.zeros (), np.hstack () 1.20.1

Statistical ICC “pingouin” pg.intraclass_corr () 0.4.0

R Data import “readxl” read.table (), read.excel (), write.table () 1.3.1

Statistical calculations and random 
number generation

“stats” chisq.test (), shapiro.test (), var.test (), t.test(), 
wilcox.test (), cor (), coef (), predict (), glm (), 
quantile (), sd (), hclust ()

4.1.1

Parallelized mRMR ensemble feature 
selection

“mRMRe” mRMR.data (), mRMR.ensemble () 2.1.2

Random samples and permutations “base” Sample (), table (), list (), mean () 4.1.1

Fit a GLM with lasso or elastic net 
regularization

“glmnet” cv.glmnet (), glmnet () 4.1.2

Visualizing the Performance of Scoring 
Classifiers

“ROCR”, “pROC” Prediction (), performance (), plot.roc () 1.0.11, 
1.18.0

Streamline the model training process “caret” Sensitivity (), specificity (), ConfusionMatrix () 6.0.9

Composer of Plots “ggplot2”, “cowplot”, 
“patchwork”

Ggplot (), patchwork () 3.3.5, 1.1.1, 
1.1.1

Transformation functions and fitting 
functions

“rms”, “MASS” Datadist (), lrm (), nomogram (), calibrate (), 
stepAIC ()

6.2.0

Risk Model Decision Analysis “rmda” decision_curve (), plot_decision_curve () 1.6

Reclassification table and statistics “PredictABEL” Reclassification (), PlotCalibration () 1.2.4

NRI and IDI to models “nricens” Nricens () 1.6

Table S4. Packages and functions used.

Table S5. The rad-score in eosinophilic and noneosinophilic CRSwNP stratified by prior surgery history in all enrolled patients.

Rad-score, median (IQR)
P*

Eosinophilic Non-eosinophilic

No prior surgery (n = 305) 0.129 (-0.506 to 0.523) -0.652 (-1.206 to -0.236) <0.001

With prior surgery (n = 87) 0.002 (-0.466 to 0.446) -0.715 (-1.195 to -0.331) <0.001

*The P values in red color indicate those less than 0.05.

Table S6. Logistic regression analysis of clinical features associated with eosinophilic CRSwNP in the training cohort

Univariate logistic regression Multivariate logistic regression

OR (95% CI) P* OR (95% CI) P*

Eosinophil absolute count 1.917 (1.592 to 2.362) <0.001 1.917 (1.592 to 2.362) <0.001

Eosinophil percent 1.433 (1.286 to 1.616) <0.001 -- --

Asthma 2.767 (1.345 to 5.860) 0.006 -- --

*The P values in red color indicate those less than 0.05.
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Table S7. Reclassification analysis of combined model in four cohorts

Combined model over clinical model Combined model over radiomics model

NRI 
(95% CI, P*)

IDI 
(95% CI, P*)

NRI 
(95% CI, P*)

IDI 
(95% CI, P*)

Training cohort
0.862 

(0.656-1.068, P < 0.001)
0.229 

(0.173-0.284, P < 0.001)
0.805 

(0.560-1.009, P < 0.001)
0.209 

(0.153-0.264, P < 0.001)

Internal validation cohort
1.092 

(0.708-1.475, P < 0.001)
0.321 

(0.200-0.442, P < 0.001)
1.092 

(0.712-1.471, P < 0.001)
0.289 

(0.172-0.405, P < 0.001)

External validation cohort-1
0.639 

(0.261-1.017, P < 0.001)
0.175 

(0.077-0.272, P < 0.001)
0.678 

(0.295-1.061, P < 0.001)
0.179 

(0.079-0.279, P < 0.001)

External validation cohort-2
1.003 

(0.594-1.411, P < 0.001)
0.275 

(0.156-0.394, P < 0.001)
0.967 

(0.559-1.375, P < 0.001)
0.248 

(0.131-0.366, P < 0.001)

*The P values in red color indicate those less than 0.05.


