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Modelling nasal airflow coefficients: an insight into the 
nature of airflow*

Abstract
Background: There has been considerable discussion and conflicting views regarding the presence of laminar or turbulent flow 

within the nose. The aim of this study was to investigate how the modelling of variable flow coefficients can assist in the evalua-

tion of the characteristics of flow in the resistive segments of the nose. 

Methodology: A comparison was made between the flow coefficient for the nasal valve, obtained from a mathematical model, 

and resistive flow components such as a Venturi meter and orifice tube. Also, a variable loss coefficient was formulated for the 

whole (unilateral) nose which, by utilising the intersection of the laminar and turbulent asymptotes, provided an estimation for 

the critical Reynolds number (R
crit

). 

Results: The results show that the flow resistance of the nasal valve is considerably greater than that for both a Venturi meter and 

an orifice tube implying turbulent or turbulent-like flow for much of nasal inspiration. Regarding the loss coefficient for the whole 

(unilateral) nose, normal respiration flowrates are displaced well away from the laminar asymptote. The critical Reynolds number 

was estimated to be 450.  

Conclusions: A novel method of determining the flow characteristics of the nose, particularly the critical Reynolds number, is 

presented. The analysis indicates a higher degree of turbulence than is assumed from a simple traditional calculation using a hy-

draulic diameter and flow through straight tubes. There are implications for computational fluid dynamics (CFD) modelling where 

either the entire nasal airflow is assumed to be laminar or a low turbulence model implemented.
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Introduction
Given the air conditioning function of the nose, the inspiratory 

airflow route through the nose and the degree of turbulence are 

important considerations. For example, abnormal flow has been 

associated with atrophic rhinitis, empty nose syndrome, turbino-

plasty and rhinosinusitis with nasal polyposis (36, 55-57). Regarding 

Nomenclature: A: Cross sectional flow area; C
d
: Flow coefficient (discharge coefficient) = actual flowrate/theoretical flowrate; K

L-turbinate
: Loss coefficient 

for the turbinate region; K
L-nose

: Loss coefficient for the whole (unilateral) nose; L, k, srt: Constants associated with the Logistic function used to model 

the discharge coefficient C
d
 for the nasal valve (Table 1). Δp: Transnasal pressure drop; Q: Volumetric flowrate; Re: Reynolds number = ratio of inertial 

forces to viscous forces; Re
crit

: Critical Reynolds number (Reynolds number associated with laminar/turbulent transition); ST, mag, Adj: Constants asso-

ciated with the tanh function used to model the loss coefficient for the turbinate region (K
L-turbinate

); u: Mean fluid velocity; ρ: Density; ν: Kinematic vis-

cosity; μ: Dynamic viscosity; λ, ξ: Coefficients associated with the linear and non-linear terms of the polynomial curve fit of the rhinomanometric data 

for the whole (unilateral) nose (equation 1). Whilst an explanation of some fluid mechanics terms has been incorporated into the Introduction, some 

readers may desire a more detailed coverage of elementary theory. If so, we recommend the first half of reference (54). 
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a theoretical analysis of the nasal pressure -v- flow data, there 

have been several mathematical models which have utilised 

Bernoulli’s equation with the incorporation of a discharge coef-

ficient, similar to the treatment of flow through a Venturi meter 

or orifice restriction (1-3). The discharge coefficient (C
d
) is simply 

a measure of how efficiently a flow component passes a given 

‘real’ fluid compared to an ‘ideal’ fluid; the latter being incom-

pressible and having no viscosity. Since the discharge coefficient 

is the ratio of the ‘actual’ to the ‘theoretical’ flowrate, then an ef-

ficient flow component, such as a Venturi meter, has a discharge 

coefficient close to 1.0 and a relatively small pressure loss 

compared to a less efficient component such as an orifice plate 

(Figure 1). However, for the nose, a significant pressure loss is 

not necessarily an indication of inefficiency since it is associated 

with increased mixing of the inspiratory airstream which aids air 

conditioning. Arguably, over-zealous surgery which results in a 

very low transnasal pressure drop may not be the most optimal 

solution for the patient.  

The fact that the flow coefficient is dependent upon the prevai-

ling Reynolds number, particularly at low flowrates, has received 

limited attention. The Reynolds number (Re) is dimensionless 

being the ratio of inertial forces to viscous forces. It is directly 

proportional to the fluid velocity such that a lower flowrate 

will result in a lower Reynolds number, reflecting an increasing 

influence of viscous forces. For steady flow in long straight pipes, 

at Reynolds numbers below about 2,000 viscous forces become 

increasingly important. The effect is to inhibit turbulence with 

the flow transitioning to become more laminar in character. 

For complex geometries there is more disruption of the flow 

such that turbulence may be present, say at a Reynolds number 

of 500, which would not be predicted from a simple pipe flow 

analogy. From measurements in a plastinated nose model, Fodil 

et al. (4) used a pressure-drop (loss coefficient) adjustment pro-

portional to Re-0.571 for Re<390 albeit they seem to attribute no 

physical significance to this requirement. Also, in a computatio-

nal fluid dynamics (CFD) simulation, Zamankhan et al. (5) provide 

an equation for a variable friction factor for Re<500 which can 

be shown to be proportional to Re-0.75. More recently, and using 

separate variable coefficients for the nasal valve and turbinate 

region, O’Neill and Tolley (6) were able to show a much better 

fit to experimental results (rhinomanometry) than for the case 

where the coefficients were held constant. 

Figure 1 shows typical calibration curves for Venturi meter, 

orifice tube (cylindrical choke) and orifice plate. For specific 

data refer to references (7-15). The large variation in the discharge 

coefficient at low Reynolds numbers for each device is clearly 

evident. Industrial flowmeters typically operate at high Reynolds 

numbers (Re >> 103) where the discharge coefficient (Cd) 

remains reasonably constant. In contrast, the Reynolds number 

during nasal breathing varies continuously within an approxi-

mate range of 0<Re<2×103. Assuming some degree of similarity 

between the characteristics of the above devices and the nose, 

the variation in the flow coefficient(s) throughout the nasal 

breathing cycle is an important consideration.  

Whilst it may be tempting to apply the data of Figure 1 directly 

to nasal airflow, there are additional influences at play which 

indicate that a more accurate relationship, specific to the nose, 

is required. Firstly, flowmeters are calibrated during steady-state 

operation (constant flowrate) and secondly, the meter is located 

in a long length of straight pipe which approximates to fully-de-

Figure 1. Discharge coefficient C
d
 as a function of the Reynolds number for A) Venturi meter, B) orifice tube (cylindrical choke) and C) orifice plate.

A B

C
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discharge coefficient -v- Reynolds number. For the valve the 

expression is a modified form of the Logistic function. This, we 

found, provided a more flexible and better fit to the rhinomano-

metric experimental data than was the case for alternatives such 

as the 2K, two-coefficients method described by Hooper (16). For 

each device in Table 1, the expression for the discharge coeffi-

cient was differentiated with respect to the Reynolds number in 

order to evaluate the likely prevailing flow conditions between 

mainly laminar (where the slope d(Cd)/dRe has a high value) and 

turbulent (where the slope d(Cd)/dRe is close to zero). This may 

be explained as follows:

As shown by Johansen (7) and others (11,17), studying orifice flow at 

very low Reynolds numbers (Re<10) the discharge coefficient is 

proportional to the square root of the Reynolds number i.e. 

Cd α Re0.5 , and so the differential d(Cd)/dRe α Re-0.5. Thus, as Re 

→ 0, d(Cd)/dRe → ∞. At high Reynolds numbers Cd is approxi-

mately constant, and so d(Cd)/dRe ~ 0. Thus, over the range 

of low to high Reynolds numbers, the magnitude of the slope 

d(Cd)/dRe varies from a high value to a value close to zero. Com-

paring this relationship for the nasal valve to those for the flow 

devices listed above gives some insight of the flow conditions 

prevailing for the valve.

  

veloped flow conditions upstream. Neither of these conditions is 

met for the case of airflow through the major resistive segments 

within the nose. Because of the more complex flow conditions, 

it might well be argued that the flow characteristics for the nose, 

whilst reflecting the effects of transitional flow within the range 

of low to moderate Reynolds numbers, should deviate some-

what from those for a flowmeter. In the material which follows 

we will endeavour to show that this is indeed the case and, in 

particular, illustrate how the variable discharge coefficient for 

the nasal valve (and the variable loss coefficient for the turbina-

te region) can be modelled by the use of the Logistic (and tanh) 

function. In addition, a loss coefficient for the whole (unilateral) 

nose is presented which is used to provide an approximation to 

the critical Reynolds number (Re
crit

).

Materials and methods
For the nasal valve 

For the purpose of this study existing information for flow 

through Venturi, orifice-plate and orifice-tube devices was 

used as a comparison to the flow characteristics for the nasal 

valve; the latter being obtained from the mathematical model 

of O’Neill and Tolley (6). The studies used for this comparison 

are listed in Table 1 together with analytical expressions for the 

*The expression is often referred to as Rohrer’s equation (18). However, the equation (in slightly different forms) has a longer history than most 

researchers might be aware. Gaspard Prony’s polynomial equation was used by 19th century hydraulic engineers in the design of city water supplies. 

Henry Darcy improved upon this with a publication which accommodated the effect of pipe roughness (19).

Table 1. Information for flow coefficient of Venturi meter, orifice-plate, orifice-tube and nasal valve. 

Author(s) Device Cd Equation
Slope   

d(Cd)
   dRe

Johansen (7) Orifice Plate Flow visualisation by dye injection upstream.

At Re<10, Cd a Re0.5

At Re>200: - Downstream vortex rings.

At Re>1200: - Vortices dissipated by ‘violent’ 
turbulence.

At Re>2000: - Complete turbulence

At Re< 10                     aRe-0,5

thus, as Re → 0, slope → ∞

At Re> 2000                      ≈  0

Hibi et al. (10) Orifice Tube

where σ = 0.89 Re × (Diameter/Length)

Arun et al. (15) Venturi

O’Neill and Tolley (6) Nasal Valve

where L = 0.68; k = 0.55 and srt = 0.1
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For the turbinate region 

Whereas a coefficient of discharge (C
d
) is commonly used for 

Venturi and orifice flow, we modelled the flow-v-pressure relati-

onship of the turbinate region by an analogy with ‘minor’ (local) 

losses in pipe flow. Here, K
L-turbinate

 is an empirically determined 

loss coefficient used to account for the pressure drop from the 

complex flow through the localised resistance. As described 

previously (6), we first modelled a coefficient of discharge for the 

turbinate region (C
d-turbinate

) by a method of trial and error using 

the tanh function. This was then converted to a loss coefficient 

K
L-turbinate

 using the relationship between the flow through an ori-

fice (or orifice tube) and the Darcy-Weisbach equation applied 

to the case of minor losses such that 

K
L-turbinate

 = (C
d-turbinate

)-2

The relationship is:

where ST = 0.043; mag = 0.20 and Adj = 0.029.

For the whole (unilateral) nose

Representing the rhinomanometric flowrate-v-pressure diffe-

rence by a second degree polynomial equation of the form

 

    (1)*

and the equation for a local pressure loss by

    (2)

The continuity equation is             (3)

and Reynolds number   (4)

where the square root of the cross-sectional flow area is used as 

the hydraulic diameter (6,20,21). 

Equating (1) and (2) and utilizing the relationships in (3) and (4) 

gives the loss coefficient:

   (5)

The relationship is the sum of two asymptotes. At high Reynolds 

numbers the first term on the right-hand side is negligible and 

the second (constant) term represents the inertial-turbulent 

asymptote. At low Reynolds numbers the first term predomina-

tes representing the (variable) viscous-laminar asymptote. Some 

researchers involved with the analysis of flow through valves 

and similar resistive components consider the intersection of 

the two asymptotes to be the location of the critical Reynolds 

number i.e. the region of laminar-turbulent transition. Others 

consider this estimate to be too high and use a value based 

upon the initial departure from the laminar asymptote (22). The 

value for the critical Reynolds number can also be obtained 

directly from Eqn (5) by equating the two asymptotes and re-

arranging so that 

    (6) 

where    

Figure 2. A) Graphical representation of data from Table 1. Coefficient of discharge Cd -v- Reynolds number for Venturi meter (15), orifice tube (10) and 

nasal valve (6). B) Graphical representation of data from Table 1. Slope, d(Cd)/dRe for the devices and nasal valve shown in Figure 2A.
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Results
Nasal valve 

In Figure 2A it is evident that the flow resistance of the nasal 

valve is considerably greater than that for both a Venturi meter 

and an orifice tube. For the valve, the discharge coefficient at a 

Reynolds number of 1,000 is about 0.33 compared to about 0.74 

for an orifice tube and 0.9 for a Venturi meter. Figure 2B provides 

more of an insight of the flow conditions prevailing across the 

range of Reynolds numbers. At Re>1,000 the low slopes of all 

the devices and nasal valve indicate a turbulent flow regime. 

For Re <1,000 the slopes for the devices increase significantly at 

decreasing Reynolds numbers, consistent with reducing turbu-

lence. However, the low slope for the nasal valve extends well 

below a Reynolds number of 500, implying significant turbulen-

ce or at least turbulent-like flow for much of nasal inspiration. 

 

Turbinate region 

Figure 3 shows the relationship between the turbinate region 

loss coefficient and the associated Reynolds number. The flow 

area used in the calculations is that of the turbinate region 

(144 mm2) since, unlike industrial meter applications, there is no 

distal upstream (usually smaller) flow area to use as a reference. 

One possibility is the nasal valve dimension which, if used, 

would move the K
L-turbinate

 curve vertically downwards.

Whole (unilateral) nose 

Figure 4 shows rhinomanometry flowrate -v- pressure diffe-

rence data and a polynomial curve fit as described by Eqn (1) 

[Methods]. When Δp and  are expressed in units of Pa and 

m3s-1, respectively, then λ = 85.2×103 and ξ = 1.28×109. Note that 

flowrate is plotted on the abscissa and both axes are logarith-

mic. The graph has been extended well beyond the normal phy-

siological range simply to illustrate the relationship of the fitted 

polynomial to the turbulent asymptote. Nasal resistance 

(Δp∕  ) is usually calculated using a reference pressure dif-

ference of 150 Pa (sometimes 75 Pa). The location for the region 

of major flow during inspiration (shaded oval) is based upon 

a respiration minute volume of 3 Lt. min-1 (one cavity) and a 

respiration rate of 12 min -1. As the graph illustrates, reference 

pressures and normal respiration flowrates are displaced well 

away from the laminar asymptote. The relationship between the 

loss coefficient and Reynolds number as evaluated according 

to Eqn (5) is shown graphically in Figure 5. The flow area used 

in the calculations is 100 mm2 which is a compromise between 

that for the turbinate region (~ 140 mm2) and that for the nasal 

Figure 3. Turbinate region loss coefficient (K
L-turbinate

) -v- Reynolds number 

(Re).

Figure 4. Rhinomanometry. Circles: experimental results in normal sub-

jects (no decongestion): meta-analysis (O’Neill and Tolley (6). Solid curve 

(red): polynomial curve fit Δp=λ  +ξ 2. Straight solid lines: laminar 

asymptote Δp=λ ; Turbulent asymptote Δp = ξ 2. Shaded oval: approx-

imate region of major flow during normal inspiration (one nasal cavity).

Table 2. Effect on the calculation of the critical Reynolds number (Eqn 6) 

by assuming different cross sectional flow areas. 60 mm2 is the flow area 

based upon the nasal valve and 140 mm2 that based upon the turbinate 

region. 

Flow area A (mm2) Critical Reynolds no. Rcrit

60 573

100 444

140 375
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FFiigguurree		44::		RRhhiinnoommaannoommeettrryy..		
CCiirrcclleess::-	Experimental	results	in	normal	subjects	(no	decongestion):	Meta-analysis	
(O’Neill	and	Tolley	(6)).			
SSoolliidd		CCuurrvvee		((RReedd))::--	Polynomial	curve	fit		𝛥𝛥𝛥𝛥 = 𝜆𝜆�̇�𝑄 + 𝜉𝜉�̇�𝑄!.			
SSttrraaiigghhtt		SSoolliidd		lliinneess::--	Laminar	Asymptote	𝛥𝛥𝛥𝛥 = 𝜆𝜆�̇�𝑄;	Turbulent	Asymptote	𝛥𝛥𝛥𝛥 = 𝜉𝜉�̇�𝑄!.			
SShhaaddeedd		OOvvaall::--	Approximate	region	of	major	flow	during	normal	inspiration	(one	nasal	
cavity).	
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valve (~ 60 mm2). There is increasing divergence from the lami-

nar asymptote noticeable from quite low Reynolds numbers. 

The two asymptotes intersect at a Reynolds number of about 

450 which may be taken as an estimate of the critical Reynolds 

number. The variation in the critical Reynolds number by as-

suming different flow areas is shown in Table 2. 

Discussion
Within the nose there are two distinct resistive components 

– the nasal valve region, situated anteriorly with a minimum 

cross-sectional area of about 60 mm2, and the main nasal cavity 

(turbinate region) with a flow area of about 140 mm2. These 

dimensions result in a Reynolds number, during quiet breathing, 

reaching about 1000 for the valve and 600 for the turbinate 

region. This study has shown that the flow resistance of the 

nasal valve is significantly greater than that for orifice flow for 

which Johansen (7) reports significant turbulence observable 

at a Reynolds number of 1,200. Also, regarding physiological 

flows in otherwise normal vasculature, there is evidence that 

localised lesions (stenosis/aneurysm), which disrupt the flow, 

significantly reduce the critical Reynolds number to within the 

range of about 100<Re
crit

<1,000 (23-25). In this present study, the 

critical Reynolds number for the whole (unilateral) nose was 

estimated to be 450 – comparable to Re
crit

 reported for a range 

of valves, orifices and nozzles (26-28). Interestingly, Schreck et al. 
(29), experimenting with a 3:1 scale physical nasal model, report a 

transition to turbulence at a Reynolds number of approximately 

600. Examination of the experimental results in the 1:1 scale 

physical model of Croce et al. (30) indicates a similar result. Also, 

Sullivan and Chang (31) obtained rhinomanometric data from 

five healthy adults subjected to an externally controlled flow. 

Their Figure 3 shows the dimensional pressure loss as a function 

of the Reynolds number. A comparison of these experimental 

results with the analysis from this present study is shown in Fi-

gure 6. The considerable difference in the vertical displacement 

between the studies can be explained largely by the different 

reference dimensions used in the flow calculations. Whereas 

Croce et al. (30) used a diameter of 2.48 cms taken from the con-

nection tube, Sullivan and Chang (31) used a hydraulic diameter 

(8 mm - median) based upon the area of the nostril. Regarding 

the shapes of the curves there is considerable similarity to the 

loss coefficient obtained from this present study which is based 

upon a meta-analysis of rhinomanometric data. Arguably, this 

represents the most accurate nasal loss coefficient data to date. 

During inspiration, the disturbance of flow through the nasal 

valve constitutes a proximate upstream disturbance to the flow 

through the turbinate region. Thus, although the turbinate re-

gion’s Reynolds number is well within the limits for laminar flow 

through straight tubes, in reality the flow is of a far more com-

plex nature. It should also be borne in mind that the maximum 

rate of heat transfer to the inspired air takes place anteriorly 

i.e. where the air-mucosal boundary temperature difference is 

Figure 6. Loss coefficient -v- Reynolds number. Comparison of experi-

mental results with the analysis from this present study. Croce et al. (30): 

1:1 model (~equivalent to decongested nose). Their raw data are, for 

convenience, shown here as single lines. Sullivan and Chang (31): shown is 

their curve-fit for each of five subjects.

Figure 5. Loss coefficient for whole (unilateral) nose. Solid curve: loss 

coefficient variation as a function of the Reynolds number. Straight 

solid lines: laminar asymptote (inclined) K
L
  =(λ2A1.5)∕μ Re; Turbulent 

asymptote (horizontal) K
L
  = ξ2A2∕ρ; The Reynolds number at which 

the asymptotes intersect is usually taken as the critical value (Re
crit

) i.e. 

laminar-turbulent transition. 
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FFiigguurree		66::		LLoossss		ccooeeffffiicciieenntt		--vv--		RReeyynnoollddss		nnuummbbeerr..				
CCoommppaarriissoonn		ooff		eexxppeerriimmeennttaall		rreessuullttss		wwiitthh		tthhee		aannaallyyssiiss		
ffrroomm		tthhiiss		pprreesseenntt		ssttuuddyy..		
Croce	et	al	(2006)	(30):		1:1	model	(~equivalent	to	
decongested	nose).	Their	raw	data	are,	for	convenience,	
shown	here	as	single	lines.	
Sullivan	and	Chang	(1991)	(31):	Shown	is	their	curve-	fit	
for	each	of	five	subjects.	
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Conclusion
Important insights into the characteristics of inspiratory nasal 

airflow have been gained by utilising variable flow coefficients 

for the nasal valve, turbinate region and the whole (unilateral) 

nose. The nasal valve promotes turbulent or turbulent-like flow 

which aids in effective mixing for air conditioning. The critical 

Reynolds number for the nose is about 450.  
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