
MINI-REVIEW

Moving beyond descriptions of diversity: clinical and 
research implications of bacterial imbalance in chronic 
rhinosinusitis*

Abstract 
Chronic rhinosinusitis (CRS) is a debilitating disease which affects 5-16% of the general population and involves long-term inflam-

mation of the sinonasal cavity. While microbial involvement in the pathogenesis of CRS has long been suspected, the exact role of 

microbes remains unclear. Recent application of cultivation-independent, molecular methods has provided much new infor-

mation, taking advantage of developments in both laboratory- and bioinformatics-based analyses. The aim of this mini-review 

is to present a variety of available bioinformatics approaches, such as data classification techniques and network analyses, with 

proven applications in other aspects of human microbiome health and disease research. The uses of molecular techniques in the 

clinical setting are still in its infancy, but these tools can further our understanding of microbial imbalance during chronic disease 

and help guide effective patient treatment.  The mini-review emphasises ways in which CRS bacterial gene-targeted sequencing 

data can progress beyond descriptive summaries and toward unlocking the mechanisms by which bacterial communities can be 

markers for sinus health.
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Introduction
Recent advances in sequencing technologies, and the bioin-

formatics tools used to analyse sequence data, have offered 

unprecedented insights into microbial involvement in human 

health and disease. The relative affordability, ease of sample 

preparation, and ability to multiplex hundreds of samples into a 

single sequencing run have made human microbiome research 

accessible and common. However, such studies are not without 

their challenges and truly informative studies are the result of 

crucial a priori decisions about study design. Studies focusing 

on the role of microbes in the pathogenesis of chronic disease 

will need to move beyond abundance descriptions (“who’s 

there?”) and towards characterising the alterations in microbial 

community structure and function that initiate, promote, and 

sustain chronic disease. This article aims to highlight the variety 

of available strategies for analysing the most common type of 

sequencing data (gene-targeted amplicon data) and the clinical 

and research implications gained from more sophisticated ana-

lysis of these datasets.

Chronic rhinosinusitis (CRS) is a debilitating disease, which 

affects approximately 5-16% of the global population, and 

presents a massive financial burden estimated at $13 billion in 

the United States per year and more than $30 million per year in 

revision surgeries, alone, in the UK (1–6). CRS is a complex group 

of diseases resulting from interactions between host genetics, 

immune system, and microbiome. CRS is defined as inflamma-

tion of the sinonasal mucosa lasting longer than 12 weeks and 

is characterized by nasal congestion or discharge, facial pain 

or pressure, loss of sense of smell, with endoscopic findings 

of polyposis and/or mucopurulent discharge (7). In patients 

where current treatment strategies, including corticosteroids, 

nasal saline irrigation, and short- or long-term antibiotics fail 

to remediate disease, functional endoscopic sinus surgery 

(FESS) is recommended to clear the sinonasal cavity of mucus 

and inflamed tissue and open obstructed drainage pathways. 

However, despite initial improvements in symptoms and high 
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success rates, approximately 10-15% of patients will be required 

to undergo revision surgery (8).

Several hypotheses exist regarding the role of the sinonasal 

bacterial community in CRS (9). One hypothesis, which reflects 

findings from other areas of human microbiome research, pro-

poses that an imbalance (dysbiosis) of the bacterial community 

contributes to CRS pathogenesis and/or exacerbation of disease 
(9–11). The causality of dysbiosis in CRS pathogenesis remains to 

be determined. An aberrant host immune response combined 

with sinonasal inflammation may trigger dysbiosis. Alternatively, 

a change in the structure and function of the bacterial commu-

nity (as a response to interactions among or between environ-

mental processes, available resources, bacterial, viral, fungal or 

archaeal members and/or the host) may provoke an aberrant 

immune response which incites mucosal inflammation. In either 

case, understanding the mechanisms by which dysbiosis occurs, 

and the effects of the altered structure and function on the 

bacterial community itself, as well as the host health status, are 

pertinent to elucidating the role of microbes in CRS.  

Research regarding the microbial role in the pathogenesis of 

CRS has shifted from a single-pathogen hypothesis to a commu-

nity change approach that favours molecular techniques over 

traditional microbial culture. Molecular microbiological methods 

encompass both standard gene-targeted sequencing as well 

as the group of ‘meta–omics’ techniques. These techniques en-

compass whole-environment analysis of DNA (meta-genomics), 

expressed RNA (meta-transcriptomics), translated proteins 

(meta-proteomics) or metabolite profiles (meta-metabolomics). 

The major difference between gene-targeted and meta-omics 

techniques is that the latter does not involve amplification of a 

specific gene in sample preparation prior to sequencing. 

Gene-targeted sequencing of variable regions in the bacterial 

16S rRNA gene is by far the most common type of sequencing 

applied for studying the bacterial role in CRS, and has revealed 

microbial communities in both healthy and CRS-affected indi-

viduals that are characterized by high inter-personal variation 
(10,12). While the number of published articles focusing on the role 

of the microbiome in CRS has increased in recent years, a con-

sensus on how microbial community diversity differs between 

diseased versus healthy sinuses has not yet been reached. This 

could be due to a combination of factors and challenges associ-

ated with using sequencing technologies to study CRS such as 

statistically underpowered studies, differences in DNA extrac-

tion methods and sample preparation, choice of PCR primers 

and thermocycling protocols, sequencing technologies, and 

bioinformatics analyses. The aim of this mini-review is to present 

a variety of available bioinformatics techniques, with proven 

applications in other aspects of human microbiome health and 

disease research, that offer ways in which CRS bacterial gene-

targeted sequencing data can progress beyond descriptive 

summaries and toward unlocking the mechanisms by which 

bacterial communities can be markers for sinus health.

Moving beyond drescriptions of diversity
The number of bioinformatics programs available for analysing 

high throughput-sequencing-based data (>5000 tools available) 

far surpasses that of any other type of biological data analysis 

(approximately 2400 tools, including mass spectrometry, PCR, 

bioimaging, microarray, NMR spectroscopy, flow cytometry and 

mass cytometry, DNA fingerprinting, and nCounter system data) 

(https://omictools.com). Many programs specific to bacterial 16S 

rRNA gene sequencing data exist for initial quality filtering of 

Figure 1. Example figures depicting common visualisations of (A) alpha 

and (B) beta diversity measures. (A) Alpha rarefaction plot showing the 

number of sequences per sample for two samples, and their correspond-

ing alpha diversity scores. As the number of sequences per sample 

increases, the shape of the curve on the rarefaction plot should plateau, 

indicating a satisfactory depth of sequencing to accurately describe true 

within-sample diversity. The rarefaction curve for sample A reaches an 

asymptote, suggesting adequate sampling effort; however, the rarefac-

tion curve for sample B steadily increases, suggesting total diversity 

within this sample was not captured and more sequencing is required. 

(B) Beta diversity visualised in a 3-D principal coordinate analysis (PCoA). 

Samples are coloured by disease status, and disease status seems to 

be driving the clustering of samples in space along the first principal 

coordinate (PC1). Samples that are closer together have more similar 

microbial community compositions than samples that are further away 

from each other on the PCoA.
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diversity tests, improve understanding. A summary of these 

techniques and their applications can be found in Table 1.

Supervised learning techniques to classify data

Supervised classification is a type of machine learning adapted 

from microarray and macro-ecology datasets, and is a power-

ful tool for predicting patterns in highly complex datasets (21). 

The major advantage with supervised learning is that once a 

user-defined model is built, it can be used to accurately classify 

unlabelled data. A training dataset of samples with taxon abun-

dances is initially used to create a model that incorporates good 

discrimination of samples based on treatment, good genera-

lization, and with an optimized expected prediction error (the 

known error of the model on future predictions). Several filte-

ring methods can be applied to remove uninformative features 

and restrict the number of predictive taxa. In the case of CRS-

related microbial research, supervised learning classifiers could, 

for example, be used to predict progression of disease from a 

group of acute rhinosinusitis patients that may be susceptible 

to developing CRS, or identifying features that help determine 

FESS recovery in severe CRS cases. In one study of Staphylococ-

cus aureus carriage in sinonasal sites, a random forests type of 

supervised learning approach was applied to identify bacteria 

that were associated with carriage status (22). Several different 

types of classification methods are freely available through the 

statistical software package R and many in-depth summaries 

are available to help guide researchers in their decision making 

when applying supervised learning techniques to their data 
(21,23–25).

Linear discriminant analysis (LDA) effect size (LEfSe)

Linear discriminant analysis (LDA) effect size (LEfSe) is a 

relatively new technique designed specifically for biomarker 

discovery from sequencing data (26). LEfSe analyses first perform 

a series of significance tests to identify important features that 

differentiate groups of samples, then the effect size of each fea-

ture is estimated. LEfSe is an easily applied technique that can 

raw sequencing data, clustering of similar sequence reads into 

groups (termed operational taxonomic units, OTUs), taxonomic 

assignment of OTU clusters, and downstream processing of qua-

lity filtered, taxon-assigned data to analyse differences between 

sample groupings. The most popular bioinformatics programs, 

such as mothur and QIIME, offer user-friendly workflows and 

tutorials (13,14). However, the results generated from these generic 

workflows offer only a preliminary glimpse at the data and 

should serve as a starting point for subsequent analyses.

The most popular bacterial community sequencing data analy-

ses include alpha and beta diversity measures (Figure 1). Alpha 

diversity measures diversity within a sample, essentially how 

many species of bacteria are in a sample (richness) and how 

the various species are taxonomically distributed across that 

sample (evenness) (15,16). A variety of diversity estimates exist that 

make different assumptions about the data and place different 

emphasis on richness or evenness (17). Alpha rarefaction curves 

provide insights into the sampling effort and sequencing depth 

of a group of samples by interpolating collected data to predict 

the true diversity within the microbial community (Figure 1A) (16). 

Beta diversity measures differences in bacterial composition and 

abundance between samples or treatments. A variety of beta 

diversity measurements exist that weight community diversity 

and abundance differently. Most often, beta diversity measure-

ments are used to investigate differences between treatments. 

These results are then visualised using plots to show how sam-

ples arrange relative to each other in space (Figure 1B). Several 

comprehensive reviews focussing on these basic analyses are 

available (18–20). 

What follows next are several types of analyses which can be 

applied to gene-targeted data that move us beyond basic 

descriptions of community diversity. This is not a complete list 

of available bioinformatics analyses, nor do we suggest that all 

methods are appropriate for every dataset. Rather, we encou-

rage researchers in CRS to consider seeking out and adapting 

bioinformatics tools from other human microbiome studies 

that, when used in conjunction with the familiar alpha and beta 

Table 1. Summary of the different microbial community analyses discussed in this review and examples of their application.

Analysis Citation Application Example

Supervised classification Knights et al., 2010
Identify discriminative taxa & 
classify unlabelled data

Yan et al., 2013

Linear discriminant analysis (LDA) 
effect size (LEfSe)

Segata et al., 2011 Biomarker discovery
Rooks et al., 2014; 
Boursier et al., 2016

Co-occurrence Network inference 
(CoNet)

Faust et al., 2012
Detects non-random patterns of 
co-occurrence and exclusion

Wang et al., 2016; Soffer et al., 
2015; Welsh et al., 2015

Fragmentation analysis Widder et al., 2014 Identify “gatekeeper” bacteria Wagner Mackenzie et al., 2016

Functional prediction (PICRUSt, 
Tax4Fun)

Langille et al., 2013
Aßhauer et al., 2015

Functional profile prediction of 
bacterial communities

Goodrich et al., 2014; 
Clemente et al., 2015
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be used online through Galaxy (http://huttenhower.sph.harvard.

edu/lefse/) or applied through the bioinformatics package mo-

thur (13). LEfSe analysis parameters are modifiable, which means 

stringent or relaxed limits can be specified by the user in order 

to explore biomarkers at different effect sizes (levels of impor-

tance). Additionally, because of its’ ability to include primary and 

secondary phenotypic structures (disease state combined with 

other patient descriptors) in the model, LEfSe lends itself easily 

to CRS data where patients may have known co-morbidities 

such as asthma. LEfSe has successfully been applied in several 

studies to differentiate disease states based on microbiome data 
(27–31). 

Co-occurrence Network inference (CoNet)

Microbial network analyses aim to uncover the underlying eco-

logical relationships, such as mutualism, parasitism, commen-

salism, and competition, among taxa in a microbial community. 

Reviews highlighting the strengths and weaknesses of network 

analyses used in microbial datasets have recently been publis-

hed (32,33). Co-occurrence Network inference (CoNet) is one type 

of network analysis tool that identifies significant co-occurrence 

and exclusion patterns of bacterial taxa based on relative 

abundances (34,35). Many challenges exist when analysing relative 

abundance estimates, as an increase in one taxon means that by 

definition there must be a decrease in at least one other taxon, 

and this can result in false correlations between taxa. CoNet has 

mitigated these issues by developing an integrated approach to 

measure community organization. CoNet predicts association 

networks from several similarity and dissimilarity measures 

(Pearson Correlation, Spearman Correlation, Kullback-Leibler 

divergence, and Bray-Curtis dissimilarity) using a generalized 

boosted linear model that combines the individual metrics. 

CoNet is used through Cytoscape (36) open source software that 

is available from www.cytoscape.org. 

CoNet has been applied to the Human Microbiome Project 

dataset to uncover microbial relationships across body areas (34). 

Those results suggest taxa that tend to significantly co-occur 

will have a cooperative relationship, whereas taxa that tend to 

negatively associate (exclude each other) have a competitive 

association. These relationships can be explained by phyloge-

netic distance and functional similarities. For example, taxa that 

are distantly related but with similar functional roles tend to 

compete. CoNet has been successfully applied to study the HMP 

dataset, lung microbiome networks in patients with chronic 

obstructive pulmonary disease exacerbations (37), and environ-

mental microbiology (38,39). However, only one study has been 

published applying CoNet to CRS datasets (10). CoNet results 

from this recent meta-analysis of CRS bacterial community data 

revealed bacteria that were associated with sinus health status, 

and potential cooperative or competitive interactions between 

taxa. CoNet, and other appropriate network analyses, can be 

used to further our understanding of dysbiosis and how it af-

fects sinonasal microbial composition and health.

Bacterial network fragmentation

Network analyses, such as CoNet (discussed above), are useful 

for identifying bacteria that cooperate or potentially compete in 

a microbial community. However, understanding the organizati-

on of these networks is critical for tracking network persistence, 

stability, and how bacterial communities respond to disturban-

ces. Fragmentation is a type of analysis used to describe the 

topology, or organization, of a bacterial network. Specifically, 

fragmentation measures the number of disconnected sub-

groups of taxa (Figure 2). Highly fragmented communities have 

an increased number of isolated subgroups, and increased frag-

mentation is associated with unstable bacterial communities (40). 

Measuring fragmentation is an extremely useful tool for stu-

dying how microbial communities organize themselves during 

health and disease. Computer modelling experiments can be 

conducted on abundance datasets to simulate the removal of 

highly connected taxa, and study the effects on the network. If 

Figure 2. Stylised diagrams depicting fragmentation in microbial com-

munities, where filled circles represent the individual bacteria that make 

up a microbial community inside an environment. Fragmentation is 

defined as the ratio of disconnected subgroups to overall nodes in a 

network. (A) An example of network topology in a ‘healthy’ microbial 

community, (B) Network fragmentation during disease, showing an 

increase in the number of disconnected subgroups of bacteria within 

the microbial community. (C) Illustration of how co-occurrence and frag-

mentation computer modelling experiments can aid in the discovery 

of ‘gatekeeper’ bacteria; (I) an intact microbial community with known 

bacterial co-occurrences, (II) Simulation of the removal of one highly 

connected bacterial taxon from the composition dataset, (III) Removal of 

that taxon results in a significant increase in community fragmentation 

when compared to the intact, original community. The removed taxon 

can be described as a ‘gatekeeper’ bacterium that is central to connect-

ing many parts of the bacterial community network. 
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highly connected taxa are removed from the network, causing 

fragmentation scores to significantly increase, then the removed 

taxon can be termed a ‘gatekeeper’ (40,41). Gatekeeper bacteria 

are central to connecting many parts of the network to hold it 

together, as they appear to be critical to the structure and func-

tion of the bacterial community. Taken together, network co-

occurrence conducted with fragmentation analyses can be used 

to discover gatekeeper bacteria, to elucidate meta-community 

dynamics, and predict overall bacterial community changes in 

network function when it’s disrupted (Figure 2C). Fragmentation 

analyses have been used to study environmental microbial com-

munities (40,42). However, this analysis has had limited application 

to study human-associated microbial network construction (10,43). 

A recent meta-analysis of bacterial 16S rRNA gene sequencing 

data applied CoNet and fragmentation analyses to propose 

that CRS-associated bacterial communities have significantly 

increased fragmentation when compared to healthy sinonasal 

communities. Furthermore, the results suggest that Propionibac-

terium and Burkholderia are gatekeeper bacteria which may be 

critical for maintaining healthy sinonasal bacterial networks. 

Other key gatekeeper bacteria may exist in the sinus micro-

biome that have not yet been identified, but with good quality 

sequence datasets, this can be investigated in the future. 

Functional prediction techniques

All the analyses discussed so far in this review aim to explore the 

composition and diversity of bacterial communities. A critical 

component for understanding the role of the microbiota in 

health and disease is to understand if there is a shift in com-

munity function, i.e. a change in the metabolic capacity of the 

bacteria which is a result of, or contributor to, the disease state. 

In order to discover in situ community functional capacity, total 

DNA from a sample needs to be sequenced, utilizing metageno-

mics techniques. However, metagenomics techniques are costly 

and, due to the overwhelming proportion of contaminating 

human DNA, very few samples can be sequenced at once (Wag-

ner Mackenzie et al., submitted). Two programs, Tax4Fun and 

PICRUSt (phylogenetic investigation of communities by recon-

struction of unobserved states ) are currently available for func-

tional prediction of microbial communities from gene-targeted 

sequencing data (44,45). The results from these programs provide 

a broad overview and prediction of possible genes present 

within a sample on the basis of previous observation about the 

detected taxa. They are not a replacement for metagenomic se-

quencing which provides direct, total, genetic information from 

all microbial components (viral, fungal, bacterial, and archaeal) 

in a sample. However, functional prediction of bacterial com-

munities can offer insights into differences in overall commu-

nity function, and a large portion of the data used for training 

PICRUSt was obtained from human-derived samples. Functional 

prediction is therefore a useful hypothesis-generating tool, and 

can help inform a decision to pursue metagenomic sequencing 

of these samples. Functional prediction of bacterial communi-

ties has successfully been applied to other human microbiome 

research (46,47), and can be easily implemented in QIIME or the 

statistical software package R.    

Implications for treatment and research 
Medical treatment recommendations for CRS with polyps 

include topical and oral corticosteroids and antibiotics. There are 

few data that clearly support the efficacy of antibiotics for the 

management of CRS, with the exception of longer term courses 

of macrolides. In spite of the limited evidence of efficacy, an-

tibiotics are still widely prescribed to patients with CRS (9). The 

effects of broad-spectrum, systemic antibiotics on the sinonasal 

microbiome, and their unintended consequences on bacterial 

communities like the gut microbiome, could potentially be 

significant since they affect a wide range of bacterial taxa. Some 

of the adverse follow-on effects of overtreatment with antibio-

tics could include: removal of keystone or gatekeeper bacterial 

species, an increase in antibiotic resistance, and loss of diversity 

which can contribute to disease predisposition and perpetua-

tion of an aberrant bacterial community structure (48).  

Randomised controlled trials (RCTs) studying the efficacy of 

long-term antibiotic usage for CRS treatment are contradic-

tory (49–51). However, RCTs are a critical next step for applying 

the results from microbiome studies to patient treatment, and 

understanding the effects of antibiotic treatment on the overall 

structure of the sinonasal microbial community. For example, 

bacterial co-occurrence and network fragmentation analyses 

can be used to identify the effect of antibiotic treatment on 

co-occurrence patterns of bacteria and community stability. 

Fragmentation analyses combined with alpha diversity mea-

surements and patient symptom scores could be used to help 

guide the development and describe the effect of potential 

probiotic treatments that remediate a dysbiotic microbial com-

munity observed in CRS.   

The different analyses presented in this review offer ways in 

which clinicians and researchers can better interpret microbial 

sequencing data in CRS. The clinical applications of these mole-

cular methods are still in their infancy, and culture techniques 

are the standard for diagnosing bacterial pathogens. Currently, 

these molecular methods are economically disadvantageous to 

implement in clinic and diagnostic settings because they require 

the use of specialised equipment and trained staff. However, the 

future of microbiome research in CRS should be to develop pre-

dictors of disease severity and prognosis, as well as to facilitate 

the design of more effective and efficient alternatives to current 

treatment. To this end, application of molecular techniques 

that move beyond bacterial composition may help mitigate 

the needs for surgery and ongoing care for this chronic disease, 

ultimately reducing hospital stays, leading to faster diagnoses, 
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and earlier, more effective treatments (52). The development of 

prebiotics and probiotics, as a complementary treatment with 

corticosteroids and/or surgical intervention, is promising and 

should be explored (53). 

Concluding remarks
A solid foundation of exploratory and preliminary studies 

describing bacterial community composition in CRS and healthy 

patients exists (10–12,54–59). These studies have generated a plethora 

of questions regarding the mechanisms underlying the role of 

the microbiota in CRS. If sinonasal microbial dysbiosis is funda-

mental to the pathogensis of CRS, then future studies utilizing 

gene-targeted sequencing must move beyond classic descrip-

tions of composition, and incorporate larger sample sizes of 

well-characterised patient data. The restriction of short-length 

amplicon sequencing to genus-level taxonomic identification 

compels the addition of complementary data such as host im-

mune, fungal, viral, or qPCR data. These bioinformatics analyses 

are examples of a few well-tested methods which have helped 

further our understanding of the role of the microbiome in 

other clinical areas, and hold promise for helping advance our 

knowledge of the potential role of the sinonasal microbiota in 

CRS pathogenesis. Given the frequency of prescribing of antibi-

otics for this condition, having a sound microbiological rationale 

guiding the use of these drugs is crucial.
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