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INTRODUCTION
Acute, recurrent and chronic rhinosinusitis are potentially 
live threatening diseases and one of the ten highest-prevalence 
and cost intensive physical health conditions affecting a 
large number of employers (1-4). The inner lining of the upper 
airways is the first barrier against possibly invading airborne 
microorganisms. Several mechanisms are closely connected 
to preserve the intact barrier of the nose and paranasal 
sinuses (5). The mechanical barrier consists of vibrissae in the 
vestibulum nasi, an intact epithelial layer, unimpaired ciliary 
function, sneezing and cough. Goblet cells and submucosal 
glands, as well as inflammatory and epithelial cells produce 
a layer of mucin rich, serous mucus and antimicrobial acting 
substances, as already described in 1922 (6). These substances 

are lysozyme, lactoferrin, secretory IgA and highly conserved 
antimicrobial peptides (AMP). AMP act against a broad 
spectrum of microorganisms like Gram-positive and Gram-
negative bacteria, fungi, yeasts and enveloped viruses. They 
also exhibit chemotactic and immunomodulatory activities 
(7). Beside expression in phagocytic cells, AMP are mainly 
expressed in epithelial barrier organs such as skin, gut, 
respiratory and urogenital tract. The number of identified 
AMP is steadily increasing and more than 40 human AMP are 
known so far (8). Major human epithelial AMP-classes are the 
beta-defensins, cathelicidins, S-100 proteins and ribonucleases 
(8). We included important members of all these classes in 
our study: the human beta-defensins (hBD) -2 and -3, the 
only human cathelicidin LL-37, the S100 protein psoriasin 
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(S100 A7c) and the ribonuclease RNase 7. The expression of 
these epithelial-derived AMP is induced at sites of infection 
and inflammation. In the skin, AMP induction is triggered 
by proinflammatory cytokines such as Interleukin (IL)-1, 
IL-17, IL-22, tumor necrosis factor (TNF)-α, wound healing, 
epidermal differentiation and bacterial contact (9,10). 
Little attention was paid until now to the upper respiratory 
tract, especially to the vestibulum nasi and nasal cavity, 
even though this is the place of first contact of inhaled 
microorganisms to the body. So far, nothing is known 
about RNase 7 and psoriasin in nasal secretion or about 
their endonasal origin. A protein like hBD-3 has not been 
investigated in nasal secretion yet, but could be detected 
by RT-PCR in nasal biopsies (11). HBD-2 was shown to be 
detectable in nasal fluid by ELISA and western blot analysis. 
It was induced in patients with Staphylococcus (S.) aureus 
colonization compared to healthy controls and acute rhinitis 
patients (12,13). Induction of hBD-2 in airway cell culture by 
Pseudomonas aeruginosa and IL-1β was described (14,15). 
Presence of LL-37 was already demonstrated by western 
blot and ELISA in nasopharyngeal surface fluid and nasal 
secretion with widely interindividual varying concentrations. 
LL-37 was also shown to be inducible by lipopolysaccharide 
and lipoteichoic acid stimulation (16-18).
There are no systematic investigations comparing the 
vestibulum nasi (squamous epithelium) to the mucosa (cilia 
bearing pseudostratified epithelium) of the inner nose about 
cellular sources of different classes of antimicrobial peptides. 

In the present study, we used immunohistochemistry to 
systematically analyse expression of various classes of AMP 
in biopsies of the vestibulum nasi in comparison with those of 
turbinates. Moreover, secretion of different classes of AMP 
in nasal fluids was investigated by ELISA. The results are 
demanding for the understanding of the innate immune system 
of nasal epithelium and a prerequisite for further investigations 
of inflammatory diseases of the upper respiratory tract. 
Keeping in mind the increasing development of antibiotic 

(multi-) resistance in microorganisms and the challenging 
therapy of recurrent self-infections, especially with S. aureus 
but also other microorganisms carried in the nose, AMP will 
become even more interesting as therapeutic agents as they 
already are in use(19). 

PATIENTS AND METHODS
Immunohistochemistry
Biopsies of ten healthy volunteers (f = 5, m = 5) with a mean 
age of 36 y (14 - 67 y) were included in this study. The nasal 
mucosa was investigated by endoscopy and persons with signs 
of inflammation or systemic infection (fever, leucocytosis) were 
excluded as well as individuals with atopic diseases, antibiotic 
or immunosuppressive treatment and pregnancy. Biopsies were 
taken while performing airway passage improving surgery. 
The study was approved by the ethics committee of the 
University of Kiel (AZ A101/07), and participants gave written 
informed consent. Biopsies showed no signs of accentuation of 
inflammatory cell influx and were obtained from the vibrissae 
bearing skin of the vestibulum nasi and from the cilia bearing 
mucosa of the turbinates. Skin biopsies of psoriasis patients 
served as controls.

Sections of 5 µm thickness were deparaffinized and rehydrated 
before heat-induced antigen retrieval was performed in 0.01 
M citrate buffer (pH 6.0). The slides were blocked with normal 
rabbit serum (1:75, Dako Cytomation, Glostrup, Denmark) for 
psoriasin. Slides for hBD-2, RNase 7, hBD-3 and LL-37 were 
blocked with TBS-buffer containing 12% BSA (Sigma-Aldrich, 
Deisenhofen, Germany). Staining was performed at room 
temperature for 1 hr using a murine monoclonal anti-Psoriasin 
antibody (HL15-4, 1:8000; kindly provided by H. Lange, Kiel, 
Germany), polyclonal goat anti-RNase 7 (1:400, (20)), goat anti-
hBD-2 (1:500, Pepro Tech Cell, NJ, USA), rabbit anti-hBD-3 
antibodies (1:500, Peprotech Cell Concepts) and polyclonal 
rabbit anti-LL-37 antibodies (1:150, Innovagen, Lund, 
Sweden). The following biotinylated secondary antibodies were 
used: rabbit anti-mouse IgG (1:200, Dako Cytomation), rabbit 
anti-goat IgG (1:500, Jackson ImmunoResearch, West Grove, 
PA, USA) pig anti-rabbit IgG (1:300, Dako Cytomation) and 
followed by incubation with Vector Universal ABC Peroxidase 
Substrate Kit (Vector, Burlingame, CA, USA) developed with 
Vector NovaRED Substrate (SK-4800) and counterstained 
with hematoxylin. Isotype controls were stained to ensure 
specificity of immunohistochemistry (negative control rabbit 
immunoglobulin fraction (Dako) LL-37, hBD-3), negative 
control Mouse IgG2a (Dako) (Psoriasin), isotype control goat 
IgG (Gen Way Biotech Inc, San Diego, CA, USA) (RNase7, 
hBD-2).

ELISA
To analyse the AMP concentration in nasal secretions, swabs 
of 20 volunteers (f = 14, m = 6, mean age: 32.5 y, range: 26 - 54 
y) were taken. Participants were free of acute inflammatory 
processes of the inner nose, atopic diseases and antibiotic or 
immunosuppressive treatment. All participants gave written 
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Figure 1. Immunohistochemical staining for AMP (100 fold magnifica-

tion). V: vestibulum nasi, T: turbinates, pos C: positive control, neg C: 

negative control, isotype C: isotype control
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informed consent and the study protocol was approved by the 
ethic committee of the University of Kiel (AZ A 104/06).
Swabs were taken by inserting the tip into both nostrils at the 
six o’clock position for three seconds and subsequently wiping 
the mucosa in circular movements three times. Afterwards 
the swab was eluted in 1 ml 10 mM sodium-phosphate buffer 
containing 150 mM NaCl (pH 7.1) and 1% bovine serum 
albumin (Sigma, Deisenhofen, Germany) for 10-15 minutes. 
Thereafter, the swab was centrifuged at 1000 rpm for 1 minute 
to recover the remaining eluate. All samples were stored at 
-80°C until further processing.
Psoriasin and LL-37 were analysed by ELISA according 
to standard protocols (21,22). For detection of RNase 7, an 
ELISA with affinity-purified polyclonal goat antibodies 
against RNase 7 was used as recently described (20). HBD-2 
and -3 were quantified using commercially available ELISA 
kits (Peprotech, Hamburg, Germany and Acris, Herford, 
Germany). Detection limits of the ELISA were 0.6 ng/ml for 
psoriasin, 0.3 ng/ml for LL-37, 2.5 ng/ml for RNase 7, 0.3 ng/
ml for hBD-2 and 1.6 ng/ml for hBD-3.

RESULTS
Immunohistochemistry
Vestibulum nasi
Psoriasin was found in all layers of the stratified squamous 
epithelium and RNase 7 in the luminal cell layers of the 
stratum corneum and granulosum. HBD-3 showed the same 
expression pattern as RNase 7, whereas hBD-2 could not be 
detected at all. LL-37 was detected in only one sample with 
slight staining in only few stroma cells (Table 1 and Figure 
1A).

Mucosa turbinate
Psoriasin could not be detected in biopsies of the cilia bearing 
mucosa, whereas RNase 7 expression was restricted to the 
submucosal glands and was only detectable in 2 samples. 
HBD-3 was detectable in 3 samples. For hBD-3 and LL-37 
positive immunostaining was seen in the epithelium, stroma 
cells and submucosal glands, whereas hBD-2 was not 

detectable (Table 1 and Figure 1B). Real time PCR data 
show expression of all AMP in turbinate specimens of healthy 
volunteers (data not shown).

ELISA
Secretion of psoriasin and RNase 7 was detected in all 20 
samples (mean concentration 19.13 ng/ml and 18.26 ng/
ml, respectively). LL-37 could be detected in 16 probes 
(mean concentration 4.34 ng/ml), hBD-2 in 5 probes (mean 
concentration 0.82 ng/ml) and hBD-3 in 6 probes (mean 
concentration 2.79 ng/ml) (Figure 2). All other samples were 
below the detection limit of the ELISA.

DISCUSSION
A balanced commensal bacterial flora of the nose is the 
prerequisite for an intact mucosal barrier and prevents 
inflammation (23). However, in immunocompromised patients 
such as patients on haemodialysis, recurrent infections with 
S. aureus are mainly caused by nasal carriage and could be 
prevented by eradication (19). In this system, AMP may play an 
important role in growth control, as it is already known for the 
skin (24). 

Concentration of AMP in nasal secretion
AMP are gene encoded highly effective antibiotics (25). Some 
AMP show effective killing in vitro in concentrations as low as 
1 - 10 µg/ml, but sensitivity against AMP of metabolic inactive 
bacteria and different strains is highly variable (26,27). 
In this study, the detected concentrations in nasal secretion 
were similar or even higher as levels detected in washing fluids 
of healthy skin (28). Taking into consideration that swabs are 
eluted in 1,000 µl and collected nasal secretion is highly diluted 
that way (up to 1,000 fold), the detected concentrations may 
reach physiological relevant killing concentrations. The in 
vivo AMP amounts on epithelial and mucosal surfaces, which 
are responsible for effective bacterial killing, are not directly 
measurable. One factor influencing the measured AMP value 
is their concentration gradient towards the nasal cavity, which 
might lead to underestimation of AMP concentrations at sites 

vestibulum nasi turbinate

epithelium stroma cells
submucosal

epithelium stroma cells
submucosal

glands glands
hBD-2 No no no no no no

hBD-3
luminal (SC, slightly 
SG)

no no yes yes yes

LL-37 No no no yes yes Yes

psoriasin
(S100A7c)

all epithelial layers no no no no No

RNase 7
luminal (SC, slightly 
SG)

no no no no Yes

Table 1. AMP distribution in the nasal mucosa detected by immunohistochemistry of representative biopsies derived from healthy individuals (n = 10).

SC:stratum corneum, SG:stratum granulosum
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of bacterial encountering like mucosa and intercellular space 
(18). In addition, the known synergistic and additive AMP 
effects (29-31) may play an important role in the nasal mucosa. 
On the other hand, potential AMP-inhibiting components of 
nasal secretion like salt concentrations are not investigated so 
far (32). 

Cellular sources
Cellular sources of AMP in nasal secretion might be mucosa 
cells (epithelium, glands, connective tissue) and infiltrating 
cells like granulocytes (18). In this study, sources of several 
classes of AMP (psoriasin, RNase 7, hBD-2, -3 and LL 37) 
in the vestibulum nasi (squamous epithelium) and turbinates 
(pseudostratified epithelium) in healthy participants were 
investigated.
In contrast to the squamous epithelium of the vestibulum 
nasi, where psoriasin and RNase 7 had been detected in the 
epithelium, only RNase 7 expression could be verified in the 
submucosal glands of the turbinates, even though both of these 
AMP are constitutively expressed on skin. This is one obvious 
difference between squamous and pseudostratified epithelium 
of the inner nose.

The epithelial expression of hBD-3 in the vestibulum nasi is 
comparable to the differentiated epithelial skin layers where 
keratinocytes are described as cellular source of beta-defensins 
(9). HBD-2 could not be detected by immunohistochemistry 
neither in the vestibulum nasi nor in the turbinates. In 
concordance with these data, hBD-2 was only detectable 
in a few nasal secretions of healthy participants at lowest 
concentrations of all AMP under investigation. Since hBD-2 
is an inducible AMP known to be strongly upregulated during 
inflammation (13-15,33-36), it is likely that its expression in the nasal 
mucosa is induced during inflammation and infection. In line 
with this hypothesis, Lee et al. have shown an increased hBD-2 
gene expression in the nasal mucosa of patients with chronic 
sinusitis (35). The recent observation that a nasal carrier strain 
of S. aureus - in contrast to a non-carrier strain - suppressed 
the induction of hBD-2 and hBD-3 in nasal epithelial cells 
underlines a potential important role of beta-defensins in the 

interaction between nasal mucosa and microbes (33).

We detected immunoreactivity of LL-37 in stroma cells of the 
turbinates. The described distribution of LL-37 and hBD-3 
in turbinates is in line with the literature, where expression of 
these AMP has been detected in epithelial cells, inflammatory 
cells in subepithelial layers and submucosal glands (11,17,34,36-40).

CONCLUSION
Taken together, the high amounts of AMP detected in the 
nasal fluids suggest that AMP may play an important role in 
the mucosal defense of the nose, a hypothesis that has to be 
addressed in further studies. Dysregulation of defensins has 
been described for various infectious and inflammatory diseases 
such as enteric Shigella and Mycobacterium tuberculosis 
infections, cystic fibrosis and Crohn´s disease (9). Results of this 
study could be the basis for investigations of a hypothetical 
dysregulation in infectious and autoimmune diseases of the 
nose and paranasal sinuses like chronic rhinosinusitis, acute 
and fungal rhinosinusitis, Wegener’s Granulomatosis, Churg-
Strauss syndrome, Mycobacterium tuberculosis, pox infections, 
and cystic fibrosis. A better understanding of AMP regulation 
in the nose might result in improvement of therapy.
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