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INTRODUCTION
The increasing prevalence of chronic airway diseases (CAD),
including chronic rhinosinusitis (CRS) and bronchial asthma
(BA), is associated with a significant reduction in patients’
quality of life. Multifactorial pathophysiological mechanisms
are very likely involved in the development of CAD. Among
them, neurogenic inflammation, induced by stimulation of
both sensory nerves and neuroendocrine cells present in the
respiratory mucosa, has received increasing attention. For
many years the airway epithelium was simply considered a pro-
tective physical barrier. However, recent studies suggest that
the autonomic nervous system of the airways is involved,
along with other, as yet, unknown mechanisms, in complex
interactions between afferent sensory fibers and efferent
nerves of sympathetic and parasympathetic origin.  

The nose may be considered as an air conditioner involved in
the protection of our fragile lower airways against inhalation of
potentially harmful exogenous particles and chemical irritants
present in our environment. Epithelial and neuroendocrine
cells also seem to interact with our immune and neural cells,
by producing pro-inflammatory neuropeptides, cytokines,
chemokines and neurotrophins (1-6). Increasing evidence sup-
ports the concept that upper and lower airways represent a
continuum. Many nasal diseases influence the lower airways
and vice versa (1).
Both upper and lower airway mucosa are densely innervated

by sensory C and Aδ nerves which can be activated by ther-
mal, mechanical and chemical stimuli (5,7). Sensations of airway
irritation, discomfort or pain inform our body about potential
injury and may trigger protective responses such as sneezing,
coughing, mucus production and airway narrowing (8). These
sensations involve the nociceptive system of our entire body,
integrating local transduction with airborne irritants as stimuli,
and with central nervous system cognitive and emotional pro-
cessing (9,10).

This short review is an attempt to summarize some of our cur-
rent knowledge with regard to the role of airborne chemical
stimuli and their possible implications in the development of
chronic inflammation of the airways and subsequent CAD. 

NOCICEPTION IN THE AIRWAYS
Most airborne chemical stimuli appear to be capable of stimu-
lating both olfactory receptors (1st cranial nerve), located in
the olfactory cleft of the superior nasal cavities, as well as the
dense network of free nerve endings of the trigeminal nerve
(5th cranial nerve) (11). The sensations derived from the trigem-
inal nerve stimulation are somatosensory and may include
burning, stinging, itching, tickling, cooling, warming and vari-
ous pain sensations. However, repeated or continuous olfacto-
ry stimulation also seems to elicit adaptation processes, con-
firmed by psychophysical measures, (i.e. decrease in perceived
intensity), as well as by psychophysiological measures, (such as
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decrease of skin conductance response (SCR) amplitudes).
Conversely, repeated trigeminal stimulation may induce differ-
ential responses due to variable inter-stimulus intervals (ISIs)
as well as the nature of the chemical stimuli (12). Specifically,
trigeminal stimuli can produce increases in rated intensity with
short ISI, a phenomenon called “sensitisation”. Moreover, with
long ISI, repeated trigeminal stimuli can produce marked
decreases in intensity, a phenomenon referred to as “desensiti-
sation”.
Fibres of the trigeminal nerve, including C- and Aδ-fibres can
induce a burning sensation when exposed to capsaicin, the
pungent component of various chilli pepper plants (13-15). The
vanilloid receptor 1 (VR1) is activated by capsaicin and then
causes a burning sensation. The VR1 receptors, present on
sensory nerve endings, can also be stimulated and/or up-regu-
lated by H+, adenosine tri-phosphate, prostaglandins, nicotine,
bradykinin, as well as histamine (14).
Interestingly, the sensitivity of nociception may vary between
individuals and seems be to up-regulated in some peoples suf-
fering from allodynia. Desensitisation of sensory nerves end-
ings could be characteristic of those who add capsaicin to their
everyday diet without experiencing any discomfort. Neuro -
peptides are synthesized in the nucleus of sensory neurons and
are then conveyed in vesicles to the nerve endings by slow
axonal transport. When the amount of released sensory pep-
tides following capsaicin exposure is higher than the amount
of sensory neuropeptides available, desensitisation may occur
(9,10,16). Chronic exposure to capsaicin can also be associated
with long-lasting functional impairment of sensory neurons (17).
Stimulation of sensory C and Aδ fibres leads to the release of
multiple neuropeptides. They include structurally-related
tachykinins, such as substance P (SP), neurokinin A (NKA),
neuropeptide, K (NPK) and calcitonin gene-related peptide
(CGRP) (3).
These neuropeptides are involved in vasodilatation and oede-
ma associated with nasal obstruction in the upper airway, and
bronchoconstriction (asthma) in the lower airway. In addition,
sensory neuropeptides participate in plasma protein exudation,
mucus secretion and inflammatory cell recruitment. This phys-
iological response, called “neurogenic inflammation” (18,19),
seems to contribute to the intensity of nasal obstruction, bron-
choconstriction and mucus production, the most common
symptoms in CAD associated with hyperreactivity. 

PRO INFLAMMATORY MEDIATORS
The concentration of pro-inflammatory sensory neuropeptides
has been shown to be increased in the airway mucosa of
patients suffering from chronic upper and lower airway inflam-
mation (16,20). The amount of these sensory neuropeptides
seems to be well correlated with the intensity of patients’
symptoms. In contrast, the activity of the enzymes involved in
the degradation of these sensory neuropeptides is markedly
reduced. As a result, a marked decrease of dipeptidylpeptidase
IV (DPPIV) activity within the human upper and airway

mucosa has previously been shown to be closely correlated to
the severity of both symptoms and histological features associ-
ated with chronic inflammatory airway diseases (21,22).
Unfortunately, there have been an increasing number of reports
of harmful side effects, such as rhinopharyngitis and headaches,
symptoms associated with “incretins” treatment, a DPPIV
inhibitor prescribed for diabetes type II oral treatment (23).
Following the discovery of a very dense sensory innervation of
the airways (3) neuroendocrine cells were identified within the
airway mucosa. This is of growing interest, since an extensive
interaction between sensory neurons, neuroendocrine cells
and immune cells has been observed during chronic airway
inflammation and persistent airway hyperreactivity. This
neuro-immune cross-talk involves different groups of media-
tors, among them the neurotrophin family, which includes
nerve growth factor (NGF), brain-derived neurotrophic factor
(BDNF) and neurotrophins (NT-3/4). Neurotrophins modulate
airway inflammation by enhancing sensory nerve excitability
and the production of pro-inflammatory neuropeptides, as well
as through interaction with different immune cell types (6,24,25).

The cellular sources of neurotrophins under physiological con-
ditions appear to be primarily neurons and nerve-associated
cells, such as glia cells, Schwann cells and fibroblasts. During
inflammation, neurotrophins are also produced by
haematopoietic cells including mast cells, macrophages, T cells
and B cells.  There is growing evidence now that neu-
rotrophins are produced by a variety of non-neuronal and non-
immune cell types such as endothelial, epithelial and neuroen-
docrine cells (26). In the normal human airways, constitutive
expression of BDNF and NGF has been found in nasal and
bronchial epithelial and glandular cells, as well as in pul-
monary lymphocytes and macrophages (27). Neurotrophin con-
centration has been reported to be quite low in bronchoalveo-
lar and nasal lavage fluid in asymptomatic patients, but increas-
es dramatically during inflammation in allergic patients (28-31).
Neurotrophins and their receptors are expressed in human air-
ways and are most likely involved in the pathophysiological
mechanisms of allergic rhinitis (32). Neurotrophins exert a dual
role in the pathogenesis of asthma (33). In the nervous system,
neurotrophins enhance the number of tachykinin-producing
nerve fibres surrounding the airways, sensitize C fibres to irri-
tants and increase the synthesis and release of neuropeptides
such as the tachykinins, SP, NKA and NKB. These neuropep-
tides are involved in several key features of chronic rhino-
sinusitis and asthma (34). In the immune system, neurotrophins
induce differentiation of B-lymphocytes, cytokine synthesis by
T cells, promote the release of various pro-inflammatory medi-
ators by mast cells and increase survival and activation of
eosinophils (35).

CONCLUSION
In conclusion, the sensory nerves, epithelial and neuroen-
docrine cells of the airway mucosa seem to contribute to symp-
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tomatic neurogenic inflammation of the airways by the release
of several peptides provoked by exposure to airborne chemi-
cals. However, one should keep in mind that neurogenic
inflammation also seems to be partly modulated by the central
nervous system, including its cognitive and emotional compo-
nents.
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