Unilateral peak nasal inspiratory flow, normal values in adult population*

Giancarlo Ottaviano1, Glenis K. Scadding2, Bruno Scarpa3, Daria Accordi1, Alberto Staffieri1, Valerie J. Lund2

1 Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
2 Ear Institute, University College London, London, United Kingdom
3 Department of Statistical Sciences, University of Padova, Padova, Italy

Rhinology 50: 386-392, 2012
DOI:10.4193/Rhino.12.071
*Received for publication: April 25, 2012
Accepted: September 1, 2012

SUMMARY

Aims: Measurement of Peak Nasal Inspiratory Flow (PNIF) is a cheap, simple, easily performed method to assess nasal patency and it is suitable for serial measurements and for home use. The purpose of this study was to establish normative unilateral PNIF data for a healthy adult population and provide charts relating unilateral PNIF normal values with various explanatory variables.

Methods and results: Repeated measurements of PNIF and unilateral PNIF were performed in 109 volunteers. Ninety seven of these fulfilled the study criteria and all of them were non-smokers, non-asthmatic, without nose and paranasal sinus problems, with ages ranging from 13 to 80 years. Data were statistically analysed and tables were produced relating unilateral PNIF to height which was the only studied variable that correlated statistically with unilateral PNIF.

Conclusions: The measurement of unilateral PNIF, providing the present data are confirmed in a larger series, could be a useful method to study single nostril patency to aid diagnosis of nasal disease, especially when it is necessary to assess the functional effects of unilateral nasal septal deviations or in all cases where there is a suspicion of a unilateral nasal occlusion. This pilot study provides initial normative unilateral PNIF data.

Key words: Peak Nasal Inspiratory Flow, unilateral Peak Nasal Inspiratory Flow, nasal patency, normal values

Introduction

Nasal airway obstruction is a common problem in ENT practice and has been shown to correlate with decreased quality of life as a result of, amongst others, decreased quality of sleep, (chronic) rhinosinusitis, otitis media and asthma (1). The measurement of nasal patency is of considerable importance for rhinologists and respiratory physiologists. Nowadays, rhinomanometry (RM) is regarded as the benchmark for the measurement of nasal airway resistances (2). Although RM is the gold standard for the assessment of nasal resistance, peak nasal inspiratory flow (PNIF) has been shown to be highly correlated with nasal airway resistances, reproducible in the evaluation of nasal airway obstruction and as good an indication of objective nasal patency as formal rhinomanometry (3). Moreover, PNIF is a cheap, simple, easily performed method to assess nasal patency and it is suitable for serial measurements and for home use (4).

In the recent past, normal PNIF values both for adult and paediatric populations have been published by many authors (5-11) allowing the application of this technique to the results of septoplasty (4). Unfortunately, all the published data on PNIF values has been obtained by testing both nostrils at the same time, despite the fact that a knowledge of unilateral nasal patency is often required, for example in selecting patients for surgery (4). This is particularly relevant when more than 17% of the patients are unable to determine the correct side of their nasal obstruc-
tion (12), or when studying unilateral nasal valve stenosis. In this pilot study, the authors have tried to establish baseline normal values of unilateral PNIF in adult subjects.

Materials and methods

Study design
A diverse population of 109 subjects ranging from 13 to 80 years old was recruited at the Department of Otolaryngology, Head and Neck Surgery of Padova University (from colleagues, nurses, patients attending for problems other than the nose and from patients’ relatives). On enrolment into the study, all subjects were asked to complete a SNOT 22 questionnaire (13). They were asked to complete a SNOT 22 questionnaire (13). They were

Mean and standard deviation of the available variables are shown in Table 1 separately for males and females. The age distribution of the population is presented in Table 2.

Results

Mean and standard deviation of the available variables are shown in Table 1 separately for males and females. The age distribution of the population is presented in Table 2.

To compare these results with those from a previous study (5) where the objective was to obtain a model relating the variable PNIF to age, sex and height, the same analysis was conducted on the present data and PNIF values shown to be in line with those previously reported, indicating good data quality.

Figure 1 shows PNIF plotted against age for male and female subjects confirming a general diminution of PNIF with age and a slight difference between the two sexes, albeit with a large residual variability, similar to that reported in our previous experiences (5,6).

We reduced the heterogeneity in variability by taking the transformation MODPNIF = (PNIF)

in which Isex is an indicator variable that takes the value of 1 for male subjects and 0 for female subjects, and e is a Normal random variable. From the model estimate summary shown in the first part of Table 3 it is possible to see that age is significant (p = 0.02, with a power of 0.42), while sex and height are marginally significant (p = 0.1). Studying the relationships between the explanatory variables, we observed that sex and height were strongly related (h² = 0.39, p < 0.001), age and height had a weak negative correlation (r = -0.25, p = 0.008), and age and sex were not related (h² = 0.001, p < 0.66) indicating again good data quality.

As the results were similar to what had been expected, we proceeded with the statistical analysis both on IPNIF and rPNIF results. In both cases we applied the same transformation: IMODPNIF = (IPNIF)

and rMODPNIF = (rPNIF)

Table 3 also shows model estimate summaries for left and right nostrils, respectively.
Only height is significant in the models, its effect is similar for both left and right nostrils and it is higher than when both nostrils are considered together. By using these models we plotted the mean expected values of rPNIF and lPNIF at specified heights with relative confidence intervals (Figure 3). We calculated these values again by using the inverse transformations \(lPNIF = lMODPNIF^2 \) and \(rPNIF = rMODPNIF^2 \). As described in the Appendix, expected values of rPNIF and lPNIF are obtained as well as approximate variances, from which we obtained approximated confidence intervals.

A further analysis was conducted to compare both lPNIF and rPNIF with PNIF values. Figure 4 shows these comparisons and the plot of PNIF with the sum of lPNIF and rPNIF. The line in the plots indicates when the two quantities are equal. As expected, most of the subjects show a larger nasal flow when using both nostrils, even if in a very small portion of cases (about 2 or 3%) unilateral PNIF (either lPNIF or rPNIF) is higher than PNIF. Finally, IPNIF and rPNIF sum value was greater than PNIF obtained by testing both nostrils at the same time, even if about 10% of subjects showed a different behaviour. A model to predict the sum of the two nostrils PNIF has been fitted to data (last part of Table 3). Once again, height was the only significant variable.

Discussion

Rhinomanometry is a well-established method to assess nasal airway resistance. It is an acceptable and safe method to assess nasal airway obstruction, but it is time-consuming, needs experience, is not easily transportable and the equipment is rather expensive. The use of a reliable, cheap and simple method for assessing nasal airway obstruction is highly desirable and in the last few years a number of researchers have concentrated their work on PNIF with the purpose of defining normal values.
Recently some authors have pointed out that a limitation of using PNIF in clinical practice, is the lack of normative data for the single nostril. This severely limits the usefulness of PNIF in those conditions where it is important to measure the airflow for each side of the nose separately, for example when selecting patients with unilateral nasal septum deviation for septoplasty.

The present study confirms that the effect of age on PNIF is significant while sex and height are only marginally significant. However, in studying single nostril PNIF results (lPNIF and rPNIF), intriguingly we have found that age is not significant to the model. This means that, whilst PNIF decreases with age, both lPNIF and rPNIF do not significantly change with age. Moreover, PNIF in males is higher than in females, while lPNIF and rPNIF seem not to change significantly between sexes. These results could be due to the reduced amount of airflow associated with unilateral PNIF actuations as clearly shown in Figs 4a and 4b. The only variable significantly related to both lPNIF and rPNIF was height. From the study of Nunn and Greg, we know that pulmonary peak expiratory flows are strictly related to patients’ height. Furthermore a relatively recent study demonstrated a correlation between pulmonary airflow and nasal airflow. It seems that, when measuring unilateral PNIF, because the effects of age and in part of gender are largely lost, the effect of height becomes the most important variable in the model. This con-

<table>
<thead>
<tr>
<th>Classes of age (years)</th>
<th>Number of volunteers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-20</td>
<td>2</td>
</tr>
<tr>
<td>20-30</td>
<td>26</td>
</tr>
<tr>
<td>30-40</td>
<td>36</td>
</tr>
<tr>
<td>40-50</td>
<td>15</td>
</tr>
<tr>
<td>50-60</td>
<td>11</td>
</tr>
<tr>
<td>60-70</td>
<td>13</td>
</tr>
<tr>
<td>70-80</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2. Number of volunteers for each age group.

| PNIF | Estimate | Std. Error | t value | Pr (>|t|) |
|---------------------|----------|------------|---------|----------|
| Intercept | 6.484 | 3.733 | 1.736 | 0.085 |
| AGE | -0.025 | 0.011 | -2.287 | 0.024 |
| SEXM | 0.691 | 0.415 | 1.665 | 0.099 |
| HEIGHT | 0.036 | 0.021 | 1.663 | 0.099 |

| Right nostril | Estimate | Std. Error | t value | Pr (>|t|) |
|---------------------|----------|------------|---------|----------|
| Intercept | -1.972 | 3.148 | -0.626 | 0.532 |
| HEIGHT | 0.070 | 0.018 | 3.807 | <0.001 |

| Left nostril | Estimate | Std. Error | t value | Pr (>|t|) |
|---------------------|----------|------------|---------|----------|
| Intercept | -1.760 | 2.866 | -0.614 | 0.540 |
| HEIGHT | 0.068 | 0.017 | 4.051 | <0.001 |

| lPNIF and rPNIF sum| Estimate | Std. Error | t value | Pr (>|t|) |
|--------------------|----------|------------|---------|----------|
| Intercept | -2.503 | 3.796 | -0.659 | 0.511 |
| HEIGHT | 0.097 | 0.022 | 4.372 | <0.001 |

Table 3. Model estimates summaries.
firms that nasal airflow in particular when tested unilaterally, is strictly related to pulmonary volumes and thereafter to patients’ height.

The sum of INIF and rINIF is higher than when PNIF is measured bilaterally (Figure 4c) which is probably due to the fact that, when testing a single nostril at a time, applying the Venturi principle, the amount of airflow (unilateral PNIF) that enters the nostril is higher than that which enters the same nostril when testing both nostrils at the same time (PNIF).

We conclude that the measurement of unilateral PNIF could be useful for rhinologists to assess single nostril patency and to...
compare it with total nasal patency. In future, unilateral PNIF should be studied in patients with unilateral or bilateral nasal obstruction in order to know whether unilateral PNIF is sensitive to detect various degrees of nasal obstruction. If the present results are confirmed in a larger series of healthy volunteers and obstructed patients, the measurement of unilateral PNIF could become an easy method to assess septal deviation or any case where there is suspicion of single nostril occlusion. We believe that the Tables presented are an important first step to obtain a reference for normal IPNIF and rPNIF ranges for the study of nasal patency, especially when selecting patients for surgery.

Conflict of interest
None

Appendix. Statistical analysis

To try to reduce the heterogeneity in variability, we considered the Box-Cox family of transformations, which tended to suggest the square root transformation for all the considered variables:

\[
\text{MODPNIF} = \left(\text{PNIF}\right)^{\frac{1}{2}}, \quad \text{IMODPNIF} = \left(\text{IPNIF}\right)^{\frac{1}{2}} \quad \text{and} \quad \text{rMODPNIF} = \left(\text{rPNIF}\right)^{\frac{1}{2}}.
\]

The model used for the present data analysis was

\[
\text{MODPNIF} = b_0 + b_1 \text{AGE} + b_2 \text{ISEX} + b_3 \text{HEIGHT} + \epsilon
\]

in which ISEX is an indicator variable that takes the value of 1 for male subjects and 0 for female subjects, and \(\epsilon \) is a Normal random variable.

The expected value of rPNIF and IPNIF are

\[
E(\text{rPNIF}) = \left(E(\text{MODPNIF})\right)^2 + \text{var}(\text{MODPNIF})
\]

and

\[
E(\text{IPNIF}) = \left(E(\text{IMODPNIF})\right)^2 + \text{var}(\text{IMODPNIF})
\]

respectively, which are easily obtained by the least squares results.

Delta method has been used to approximate variances of rPNIF and IPNIF, from which we get approximated confidence intervals

\[
\text{Var}(\text{rPNIF}) \approx 4\left(E(\text{rMODPNIF})\right)^2 + \text{var}(\text{rMODPNIF})
\]

and

\[
\text{Var}(\text{IPNIF}) \approx 4\left(E(\text{IMODPNIF})\right)^2 + \text{var}(\text{IMODPNIF})
\]
References

