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Deviated nasal septum hinders intranasal sprays: a 

computer simulation study*

Summary

Background: This study investigates how deviated nasal septum affects the quantity and distribution of spray particles, and 

examines the effects of inspiratory airflow and head position on particle transport. 

Methods: Deposition of spray particles was analysed using a three-dimensional computational fluid dynamics model created 

from a computed tomography scan of a human nose with leftward septal deviation and a right inferior turbinate hypertrophy. 

Five simulations were conducted using Fluent™ software, with particle sizes ranging from 20-110 μm, a spray speed of 3 m/s, 

plume angle of 68°, and with steady state inspiratory airflow either present (15.7 L/min) or absent at varying head positions. 

Results: With inspiratory airflow present, posterior deposition on the obstructed side was approximately four times less than the 

contralateral side, regardless of head position, and was statistically significant. When airflow was absent, predicted deposition 

beyond the nasal valve on the left and right sides were between 16% and 69% lower and positively influenced by a dependent 

head position.

Conclusion: Simulations predicted that septal deviation significantly diminished drug delivery on the obstructed side. 

Furthermore, increased particle penetration was associated with presence of nasal airflow. Head position is an important factor in 

particle deposition patterns when inspiratory airflow is absent.
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Introduction

Intranasal medications such as topical intranasal steroids (INS) 

or intranasal antihistamines are widely used to treat a variety of 

sinonasal inflammatory, allergic, and infectious disorders. In ad-

dition, intranasal drug delivery can be used for systemically ac-

ting drugs that are difficult to deliver through routes other than 

injection, such as insulin and vaccines (1). However, despite the 

popularity of aqueous nasal sprays, experimental studies have 

shown that many spray devices deposit a significant amount of 

their drug in the anterior, less metabolically active regions of the 

nose (2-6). 

A combination of drug, device, and patient factors can con-

tribute to the efficacy of intranasal drugs. These include drug 

formulation characteristics, delivery device design, delivery 

technique, site of deposition, nasal anatomy, and underlying 

sinonasal medical conditions (7,8). Nasal anatomy is particularly 

significant since it is characterized by variations across individu-

als. The efficacy of drug delivery using nasal sprays has not been 

well described in patients with nasal airway obstruction (NAO) 

due to anatomic nasal deformities such as nasal septal devia-

tion. Most studies characterizing intranasal drug deposition pat-
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terns have used subjects with normal sinonasal anatomy (6,9-12). 

Additionally, individual anatomic differences and head position 

have been shown to affect intranasal drug deposition (7). In our 

previous work (3), we compared drug delivery penetration past 

the nasal valve of aqueous spray pumps and nebulizers in a 

patient with deviated nasal septum. However, the presence or 

absence of inspiratory airflow and head position on topical nasal 

medications were not considered in this study. 

Anatomic nasal deformities in combination with inspiratory air-

flow and head position have the potential to significantly alter 

intranasal drug delivery and limit the efficacy of these medica-

tions. Computational fluid dynamics (CFD) methods have been 

shown to render numerical predictions of airflow patterns and 

particle trajectories in complex geometries such as the human 

respiratory system (2,3,13-32).

The objective of the present study was to investigate the impact 

of nasal septal deviation on spray particle penetration and de-

position using CFD techniques and to examine the influence of 

inspiratory airflow and head positioning. More specifically, the 

simulated data generated were used to test the following null 

hypotheses:

Hypothesis #1: Spray particle penetrations past the nasal valve 

for both (obstructed left and “normal” right) sides of the nasal 

cavity are equal.

Hypothesis #2: The presence or absence of inspiratory airflow 

does not improve efficacy of particle transport within the nasal 

cavity.

Hypothesis #3: Head position does not impact spray particle 

deposition beyond the anterior region of the nose. 

Materials and methods

Nasal Model Construction

A three-dimensional (3D) nasal airway model of a 30-year-old 

Caucasian female subject (weight, 86.4 kg; height, 164.6 cm) 

with a moderate to severe broad leftward deviation of the 

mid-portion of the septum and a compensatory right inferior 

turbinate hypertrophy (Figure 1) was created from a CT scan 

containing 142 slices, with an increment of 0.625 mm, and a 

pixel size of 0.313 mm. The subject provided written informed 

consent as required and approved by the Institutional Review 

Board at Medical College of Wisconsin. The CT scan files were 

imported into the medical imaging software Mimics™ 13.1 

(Materialise, Inc., Plymouth, MI, USA), and a 3D reconstruction of 

the main nasal airways was constructed from which the parana-

sal sinuses were omitted. The 3D reconstruction was exported 

from Mimics™ in STL (stereolithography) file format into the CAD 

and mesh generating software package ICEM-CFD™ 12.1 

(ANSYS, Canonsburg, PA, USA). Planar nostril and outlet surfaces 

as well as regions for tracking particle deposition were con-

structed as shown in our previous study (3). The nasal cavity was 

separated into the following regions:

The anterior regions ranged from the nostrils up to the nasal val-

ve area; the middle regions covered the turbinates and adjacent 

nasal septum, and the nasopharynx was defined as posterior to 

the turbinates and septum.

Figure 1. Coronal view showing leftward septal deviation. This diagram is 

reproduced with permission from Frank et al.(3)

Figure 2. Aerosol particle deposition posterior of the nasal valve area on 

the right and left (obstructed) sides of the airway. 

The bars indicate the means + standard deviation. (A) Airflow Present.  

(B) Airflow Absent.
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Head Positions

Spray particle simulations were carried out using three different 

head positions (described below) that have been experimen-

tally studied as well as recommended by most manufactures of 

topical INS sprays (7,11,33).

(1)  Head is held upright in a neutral position at about 0o 

to the vertical plane identical; “head upright position.” 

(2)  Head is tilted back at about 45o to the vertical plane; 

“head back position.” 

(3)  Head is extended just off the edge of a bed or table 

at about 90o to the vertical plane while lying down in 

a supine position; “Mygind’s position.” This position as 

pointed out by Merkus et al.(7) was first described by 

Proetz in 1926 and then modified by Mygind in 1979. 

Numerical simulation of airflow and particle trajectories

In order to solve the equations that govern fluid flow, a compu-

tational mesh of the airspaces was created in ICEM-CFD™ using 

approximately 4 million graded tetrahedral elements with a 

three-layer prism-element boundary. This is consistent with an 

in house mesh density study that showed that about 4 million 

elements will provide mesh independent numerical results.

For the case when airflow was present, steady-state, laminar 

inspiratory airflow was simulated using the CFD software pac-

kage Fluent™ 12.1.4 (ANSYS, Inc., Canonsburg, PA, USA) under 

pressure-driven conditions. Laminar flow is sufficient in this 

study since we are simulating resting breathing rate. By simula-

ting at steady-state, this implies that time-dependent variables 

were held constant and all derivatives with respect to time were 

zero. The boundary conditions specified in Fluent™ to determine 

the airflow field were identical to those previously used: (3,14,34) 

-

nary with zero air velocity at the air-wall interface. 

pressure set to zero. 

pressure set to -25.4 Pa that generated a target steady-

state flow rate of 15.7 L/min. This flow rate was twice 

the minute volume (amount of air inhaled in 1 min, 

defined as tidal volume times respiratory rate) as esti-

mated from body weight using gender-specific power 

law curves derived by Garcia and colleagues (19).

These authors concluded that data from the 1994 report of the 

International Committee on Radiation Protection (ICRP) was the 

best source for variation in minute volume by age and gender. 

Using the ICRP data, Garcia and colleagues (18,19) derived the fol-

lowing equations:

Males (sitting awake): VE = (1.36 ± 0.10) M0.44 ± 0.02

Females (sitting awake): VE = (1.89 ± 0.40) M0.32 ± 0.06

where VE = minute volume in liters per minute (L/min), M = 

body mass in kilograms (kg). These airflow rates are descriptive 

of ventilation during sedentary activities such as watching TV 

or driving a car(35). Airflow rates for steady-state inspiration were 

calculated by assuming that the duration times of inspiration 

and expiration were the same, so that the airflow rate for inspi-

ration alone was twice the minute volume. For the case when 

airflow was absent, a similar simulation to the airflow-present 

case above was conducted in Fluent™ except that gauge pres-

sure was set to 0 Pa at the outlet.

The spray release was defined to be 0.5cm into the nasal 

vestibule from the nostril surface on each side. This 0.5cm 

distance was the largest of those used previously by Kimbell 

and colleagues (2) that fit into the nasal vestibule of this patient. 

Spray was directed laterally or to the side, away from the septum 

and toward the outer portion of the eye as recommended by 

Benninger et al. (33). The angle of spray insertion was maintained 

for each side of the nose without regard to head position. 

The particle sizes (20-110μm), and spray plume angle of 68o 

considered in this study resemble the Pfeiffer spray pump PF-80 

used by Cheng and colleagues (10). A spray velocity of 3m/s was 

chosen as within the average velocity range of most commerci-

ally available sprays (1-14.7m/s) (2,36). In addition, the discharge 

velocity of flunisolide (though unknown) was estimated to be 

370cm/s (3.7m/s) (37). The different head positions were simula-

ted by setting appropriate x, y, and z components to conform to 

the direction of gravitational acceleration. 

Particle trajectories were calculated using the Discrete Phase 

Model in Fluent™, assuming unit density and spherical particles, 

using Lagrangian equations of motion for particulate motion, 

until particle deposited or exited the nasal airway. Particles that 

exited the nasal airways at the outlet via the nasopharynx were 

categorized as “Escaped.” For particles that deposited in the 

nasal cavity, the region in which each particle deposited was 

tracked. The “solid cone” injection type was specified in Fluent™ 

for the particle streams that emanated from the spray release 

position, which releases streams at randomly dispersed angles 

throughout the spray cone region. To adequately characterize 

the PF-80 pump in Fluent™, we used Rosin Rammler Particle Size 

Distribution (RRPSD) set to range in aerodynamic diameter from 

20 to 110μm with mean diameter of 66.7μm and spread distri-

bution parameter of 2.95. A total of 1000 particle streams were 

released from each nostril. Analysis and visualization of results 

were conducted using Fluent™ and the post-processing software 

package Fieldview™ 12 (Intelligent Light, Lyndhurst, PA, USA).

Statistical analysis 

Spray particle simulations were conducted five times. The num-

ber of simulations was obtained by determining the sample size 
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required to estimate the true population mean of the number of 

particles depositing on the various regions of the nasal cavity at 

a 95% confidence level so that the sample means of the number 

of deposited particles would lie within six particles of the actual 

population mean, where six is the maximum error (or half width) 

of a 95% confidence interval for hypothesis #1. Statistical power 

analysis was conducted to obtain the observed power when 

n = 5 for hypothesis #1. For “head upright” and “head back” 

positions, we obtained a power of 1, and a power of 0.55 for the 

Mygind’s position.

The mean number of particles depositing on the various regions 

of the nose when spray was released into the left (obstructed) 

or right side of the nasal cavity, in one of three head positions, 

and when inspiratory airflow was either present at 15.7L/min 

or absent was calculated and tabulated. The simulated data ge-

nerated were used to test the aforementioned null hypotheses. 

The Student’s t-test was used to test hypotheses #1 and #2 since 

two independent samples were compared (left and right sides 

for hypothesis #1; airflow present and absent for hypothesis #2), 

while analysis of variance (ANOVA) was used to test hypothesis 

#3 because three independent samples representing head posi-

tions were compared. Statistical analyses were carried out using 

Microsoft Excel™ 2007 (Microsoft Corp., Redmond, WA, USA) and 

MATLAB™ version R2010b (Mathworks, Inc., Natick, MA, USA); a 

p-value less than 0.05 implied statistical significance.

Results

Simulations predicted that most of the spray particles deposited 

in the anterior region of the nose, regardless of nasal side, head 

position, or airflow presence (Table 1). In addition, simulated 

results in Table 1 show the anterior lateral wall had substantially 

more deposition than anterior septal wall regardless of nasal 

side, head position, or airflow presence, with a somewhat grea-

ter effect on the right side. Whereas, the middle region revealed 

greater deposition on the septum than on the lateral wall regar-

Present

Absent

Upright 329.8 132.2 607.6 644.8 56.0 121.4 6.6 101.6 0.0 0.0 0.0 0.0

Head Back 332.0 136.8 605.8 643.2 55.2 116.6 7.0 103.4 0.0 0.0 0.0 0.0

Mygind’s 330.8 135.8 607.6 645.0 55.4 114.6 6.2 104.6 0.0 0.0 0.0 0.0

Upright 367.4 224.6 617.4 703.4 9.2 47.4 6.0 24.6 0.0 0.0 0.0 0.0

Head Back 243.4 102.0 727.6 788.4 23.6 67.6 5.4 42.0 0.0 0.0 0.0 0.0

Mygind’s 240.6 89.8 653.8 779.8 33.8 40.0 71.8 90.4 0.0 0.0 0.0 0.0
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Left Right Left Right Left Right Left Right Left Right Left Right

Upright

Head Back

Mygind's

Present 62.6 ± 7.96 223.0 ± 8.97 <0.00001

Absent 15.2 ± 2.05 72.0 ± 6.44 0.00001

Present 62.2 ± 7.79 220.0 ± 10.51 <0.00001

Absent 29.0 ± 1.22 109.6 ± 10.01 0.00005

Present 61.6 ± 7.77 219.2 ± 10.03 <0.00001

Absent 105.6 ± 9.5 130.4 ± 9.99 0.00385

Head Position Airflow Left Side (n=5) Right side (n=5) p-value

Table 1. Mean numbers of particles deposited into various regions of the nasal cavity on left (septal deviation) and right sides. Five spray particle 

simulations were conducted, with 1000 particle streams released in each simulation.

Table 2. Testing the null hypothesis that spray particle penetrations past nasal valve for both sides of the nasal cavity are equal (Hypothesis #1). The 

values were presented as means ± standard deviation and were compared with the Student’s t-test. P < 0.05 indicate statistical significance (all cases).
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dless of nasal side or presence of airflow for the “head upright” 

and “head back” positions. The Mygind’s position had higher 

middle lateral wall deposition in the case when airflow was 

absent. For both breathing states, no particles were predicted to 

deposit in the nasopharynx, and no particles exited the airway. 

CFD results in Figure 2A show that about four times as many 

particles deposited past the nasal valve on the right side than 

on the obstructed (left) side when airflow was present. Higher 

posterior deposition was also evident when inspiratory flow was 

absent (Figure 2B) except for the Mygind’s head position.

Results of test of hypothesis #1 (Table 2) demonstrate that there 

is significant difference in spray particle deposition past the na-

sal valve between the obstructed (left) and right sides for every 

head position, and whether inspiratory airflow was presence 

or not. In the “head upright” position with airflow present, the 

impact of septal deviation on particle transport was depicted 

in Figure 3; aerosolized particle deposition pattern beyond the 

anterior lateral wall was evidently lower on the obstructed side 

compared to the right side. The presence or absence of airflow 

was statistically significant in determining the efficiency of 

particle transport within the nasal cavity, regardless of head 

position and side of nasal passage (Hypothesis #2; Table 3). In 

general, inspiratory airflow improved particle transport (Figure 

2), with the exception of the Mygind’s position where deposition 

on the obstructed side was predicted to improve when airflow 

was absent. Table 4 provides a summary of test of hypothesis 

#3. With airflow present, simulation predicted that the effect of 

head position on spray particle deposition beyond the anterior 

region of the nose was not statistically significant for either side 

of the nasal passage. However, in the case where airflow was ab-

sent, head position significantly influenced deposition patterns 

posterior of the nasal valve.

Discussion

Prior research on topical drug deposition has been performed 

in patients with normal nasal anatomy; therefore, drug depo-

sition in patients with anatomic abnormalities including septal 

deviation has not been well described. Furthermore evidence 

is lacking on how best to instruct patients in the use of their 

nasal sprays to optimize spray penetration and distribution in 

the presence of a common anatomic deformity such as a septal 

deviation, let alone those with normal sinonasal anatomy. In 

2004, the American Academy of Otolaryngology-Head and Neck 

Surgery Foundation (AAO-HNSF) conducted a systematic review 

of the literature, but could not determine spray techniques that 

optimized intranasal spray efficacy (33). As pointed out by Ag-

garwal et al., (38) the reasons why topical nasal drug deposition 

patterns are hard to investigate include individual anatomical 

differences, different head positions, and the choice of adminis-

trative device (sprays or drops). 

Upright

Head Back

Mygind's

Left (Affected) 62.6 ± 7.96 15.2 ± 2.05 0.00010

Right 223.0 ± 8.97 72.0 ± 6.44 <0.00001

Left (Affected) 62.2 ± 7.79 29.0 ± 1.22 0.00056

Right 220.0 ± 10.51 109.6 ± 10.01 <0.00001

Left (Affected) 61.6 ± 7.77 105.6 ± 9.5 0.00005

Right 219.2 ± 10.03 130.4 ± 9.99 <0.00001

Head Position Side Flow (n=5) No flow (n=5) p-value

Present

Absent

Left (Affected) 0.97963

Right 0.81635

Left (Affected) <0.00001

Right <0.00001

Airflow Side p-value

Table 3. Testing the null hypothesis that the presence or absence of inspiratory airflow does not improve efficacy of particle transport within the nasal 

cavity (Hypothesis #2). The values were presented as means ± standard deviation and were compared with the Student’s t-test. P-value < 0.05 indicate 

statistical significance (all cases).

Table 4. Testing the null hypothesis that head position does not impact spray particle deposition beyond the anterior region of the nose (Hypothesis 

#3). The different head positions were compared using analysis of variance (ANOVA). P-value < 0.05 indicate statistical significance (all cases).
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The angle at which the simulated sprays were directed on each 

nasal side was guided by the recommendations of Benninger 

et al.(33). However, these guidelines had to be interpreted in the 

context of the anatomy of the patient in this study such that 

the actual angle from the nostril center to the outer eye, which 

aimed the spray directly onto the lateral vestibule wall, was mo-

dified slightly to point toward the center of the eye rather than 

the outer corner. More significant modifications of this angle in 

other patients might be necessary to accommodate more severe 

or more anterior septal deviations. Further studies are needed 

to characterize the quantitative effects of such insertion angle 

modifications. In addition, our CFD simulations only accounted 

for regional particle deposition and did not determine the final 

destination of aerosols due to mucociliary transport or “run-

off” effects of particles after deposition, two factors that may 

contribute to the taste that patients may perceive after sprayed 

medications are administered. Also, our simulation results were 

consistent with reports in the literature indicating that particle 

sizes ranging in aerodynamic diameter from 20-110μm were not 

easily respirable (3,4). 

Methods used to evaluate nasal deposition of topical medi-

cations include endoscopic visualization of dyed aerosols, CT 

imaging after application of contrast medium, or quantification 

of radioactivity or dye collected on strategically-placed surgical 

pledgets. CFD has several advantages over these other methods. 

First, patients are not exposed to any additional radiation other 

than that necessary for diagnostic CT scans. Second, quanti-

tative, regional deposition patterns are obtained with much 

greater accuracy than is possible with other methods. Third, an 

unlimited number of simulations with varied parameters can be 

performed without any additional inconvenience or risk to the 

patient. A number of CFD studies of nasal spray deposition have 

been conducted (2,13,24-26,30-32,39), indicating that these methods can 

be used to make reasonable predictions. By running multiple si-

mulations in the same nasal cavity model, we demonstrate that 

the variations in deposition patterns between simulations were 

marginal. In addition, with the aid of a statistical power analysis, 

we determined an appropriate number of simulations to ensure 

Figure 3. Simulated spray particle deposition pattern on the lateral wall. Particles colored in white deposited in the anterior region, while the black 

particles penetrated past the nasal valve area. (A) Left (Septal Deviation) side with inspiratory airflow present in the “head upright position”. (B) Right 

side with inspiratory airflow present in the “head upright position”. (C) Left (Septal Deviation) side with inspiratory airflow absent in the “head upright 

position”. (D) Right side with inspiratory airflow absent in the “head upright position”. (E) Left (Septal Deviation) side with inspiratory airflow absent in 

the Mygind’s head position. (F) Right side with inspiratory airflow absent in the Mygind’s head position.
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that our study was adequately powered. 

Previous studies investigating the influence of head position on 

effectiveness of topical nasal medications have produced mixed 

conclusions. Merkus and colleagues (7) suggested that head 

position has a substantial influence on the deposition of topical 

nasal drugs into the middle meatus. In contrast, other studies 

found no significant effect of head positions on drug deposition 

efficiency (11,25). As such, the impact of head positions on the ef-

ficacy of intranasal drugs has not been conclusively determined 
(33). Our CFD simulations indicate that particle transport and dis-

tribution were not sensitive to head position when inspiratory 

airflow was present but were highly sensitive to head position 

when inspiratory flow was absent. With no airflow present, the 

Mygind position afforded the best penetration, followed by 

head back and upright positions, respectively.

The significance of the present study cannot be overlooked 

given that the prevalence of septal deviation in healthy adults 

is between 19.5-26% (14). Allergic rhinitis and chronic rhinosinu-

sitis, two conditions frequently treated with topical intranasal 

medications, are common conditions in the general population 

as well, making it likely that many patients have co-existing 

anatomic and allergric/inflammatory components contributing 

to nasal obstruction. In this population of patients, if a septal 

deviation or other anatomic deformity inhibits delivery of topi-

cal medication to the areas of the nasal cavity where it will have 

its greatest effect surgical correction of an underlying anatomic 

deformity may greatly increase the efficacy of medical manage-

ment. 

There are limitations of this preliminary study that warrant 

mentioning. First, while this study exposed and quantified the 

adverse effects of a moderate to severe septal deviation on INS 

sprays, our airflow simulations were limited to laminar, steady-

state conditions, meaning that turbulence and the cyclic nature 

of airflow were not modeled. Second, the results reflect the 

nasal anatomy of a single subject with some evidence of nasal 

cycling, which this preliminary study did not account for. The ex-

tent to which mucosal edema resulting from the nasal cycle may 

play a role in the distribution of nasal medications is unclear. In 

conclusion, CFD simulations suggest that the impact of septal 

deviation on intranasal drug delivery was statistically significant. 

Effective topical drug delivery technique would ideally incor-

porate standardized patient instructions as to head position 

and appropriate inspiration and take into account the effect of 

anatomic deformities on drug deposition.
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